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H PREFACE

This report has documented the results of the DAIS study contract. The

results of three areas of work will be detailed throughout the following
pages.,

First, the results and ensuing recommendations of an instruction set
analysis are presented in Section 2. Paramount in this work is the
selection of base addressing as the most effective method of achieving
greater software efficiency. Indeed, base addressing yields a 30 percent
improvement in software efficiency when compared with the current AYK-15
instruction set, Also, new data formats for floating -point number representa-
tion were analyzed along with integer and fractional representations for fixed-
point numbers,

The conclusions of this software analysis were are. presented as a re-
commended instruction matrix in Table 2. This instruction set is then
"subsetted" for the Low Level Machine and presented in Table 3.

Second, the hardware and firmware impact of implementing the instruc-
ion set of Table 2 on the current AYK-15 computer is analyzed in section 3.
The cost impact of the proposed changes are summarized iun Table 7.

Finallv, the instruction set of Table 3 18 wused to investigate the design
of a low-level number of the AYK-15 based computer family, Whenever
appropriate, performance is sacrified to achieve a minimum parts count
for the Low-Level Machine. During this investigation, floating-point in-
structions are also incorporated into the LLM design., The results of the

design are tahulated and presented in terms of performance (instruction

speeds), parts and power,

-
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This study shows the desirability and practicality of generating a
family of military computers based upon the present AYK-15. With the
modifications outlined in this report, the AYK-15 and the LLM provide a

sound basis for developing a family of airborne digital computers,




SECTION

TABLE OF CONTENTS

I PURPOSE

L. 1
.2
l.3
II
.1
.2

Instruction Set Choice
'Hardware Modifications to Present Dais Computer
Design of Low Level Dais Machine (LLM)
INSTRUCTION SET DEFINITION

Family Concept (Upwards Compatibility)

Software Efficiency Study of New Addressing Modes

. 2.1 Register Indirect

. 2.3 Immediate Short

. 2.
. 2.
2.2,

2
2
2
2.2.2 Base Relative
2
2
2

4 Jump Conditional (IC Relative)
5 Jump to Subroutine (IC Relative)
6 Stack (PSH/POP)

2.2.7 Immediate Long Formats

2.3
2.3,
2. 3.
2, 3.
2.4
2. 4.
2. 4.
2. 4.
2, 4,
2. 4.
2. 4,

R U T S AR -

New Data Formats

| Fixed=-Point Multiply and Divide
2 Floating Point Format

3 Extended Floating-Point Arithmetic
Context Switching

1 LPSW Instruction

2 Interrupts

3 Priviliged Modes

4 Multiple Register Sats

5 Extended Memory Addressiag

6 PSW Formats

PAGE

N N

wn (841 (€3]

12
13
14
14
14
15
16
16
18
21

22

22
23
23
24

N
W

——

M )



e e Rat AR T

SECTION PAGE

2.4.7 Re-Entrant Subroutines 25
2.5 Conclusions : 30
- 2.5.1 Summary of Proposed Changes ' 30
2. 5.2 Final Instruction Set 34
2, 5.3 Subset for Low Level Machine 34
IIT MODITFICATIONS TO PRESENT DAIS 37
3.1 Micro-Code 37
3.1.1 Instruction Changes 37
3.1.2 Changes for Floating=Point Instruction Formats 41
3,2 Hardware/Firmware Cost Summary 42
3.3 Detailed Documentation 42
Iv LOW-LEVEL MACHINE (LLM) DESIGN 133
4.1 Scope of Design 133
4,2 Application Base of I.LLM 133
4,3 Design Goals 134
4.4 L.LLM Organization 136
4. 4,1 Arithmetic Loop _ 136
4, 4.2 Control Structure 138
4. 4.3 1/O Organization 138
4, 4.4 Machine Operation and Timing 139
4, 4.5 Execution Times 151
4, 5 Physical Description 151
153
vi




FIGURE
1

~N o U W

oo

LIST OF ILLUSTRATIONS

SROM

RROM

S=-Gates

PTS5ROM

PSH Instruction

PSH Timing Diagram

. POP Instruction

POP Timing Diagram

LPSW Words

LPSW Instruction

LPSW Timing Diagram

TYPE - PS (Register to Register Special)
FAR Timing Diagram

FAR Instruction

FAR Instruction

TYPE - PS (Register to Register Special)
FSR Timing Diagram

FSR Instruction

FSR Instruction

TYPE - PS (Register to Register Special)
FMR Timing Diagram

FMR Instruction

FMR Instruction

TYPE - PS (Register to Register Special)
FDR Timing Diagram

vii




—n b ..

FDR Instruction

FDR Instruction

TYPE - PS (Register to Register Special)
FCR Timing Diagram

FCR Instruction

TYPE « D (Direct Memory Access Instruction)
M Timing Diagram

M Instruccion

M Instruction

TYPE - R (Register to Register Instruction)
MR Timing Diagram

MR Instruction

MR Instruction

Type = I (Indirect Memory Access Instruction)
MI Timing Diagram

MI Iastruction

MI Instruction

Type « D (Direct Memory Access Instruction)
D Timing Diagram

D Instruction

D Instruction

Type - R (Register to Register Instruction)
DR Timing Diagram

DR Instruction

DR Instruction

Type = I (Indirect Memory Access Instruction)
DI Timing Diagram

DI Instruction

Di Instruction

vii{

WA ad I M o s

PAGE

73
74
76
77
78
80
81
82
83
85
86
87
88
90
91
92
93
95
96
97
98
100
101
102
103
105
106
107
108

iy

4



FICERE PACE

55 'fype - R (Register to Register Instruction) _ 110
56 DABS Timing Diagram 1!
57 DABS Instruction 112
58 Type - R (Register to Register Instruction) 114
59 DNEG Timing Diagram 115
60 DNEG Instruction 116
61 Type - R (Register to Register Instruction) 118
62 SRC Timing Diagram 119
63 SRC Instruction 120
64 Type - R (Register to Register Instruction) 122
63 DSLL Timing Diagram 123
66 DSLL Instruction 124
67 Type - R (Register to Register Instruction) 126
68 DSRA Timing Diagram 127
69 DSRA Instruction 128
70 Type - R (Register to Register Instruction) 130
71 DSCR Timing Diagram 131
L 72 DSCR Instruction 132
73 Low-Level Machine as a Pre-processor 138
74 LLM CPU Organization 137
75 LLM I/O Organization 139
76 Instruction Fetch Flow 141
77 Instruction Fetch Timing 142
78 Fixed-Paint ADD Flow 143
) 79 Fixed-Point ADD Timing 144
80 Shift Instruction Flow 146
81 Shift Timing 147
82 Floating - Point ADD 148
83 Multiply Flow 150
ix




B SIS T

TABLE

LA Y I o [

~J

B i o e

LIST OF TABLES

Instruction Set Comparison
Recommended Instruction Mnemonics in Matrix Form

Dais Family Low-Level Machine - Recommended
Instruction Mnemonics in Matrix Form

New Instruction Evaluation

Dais Study Addressing Mode Evaluation (Sheet 1 of 2)
Dais Study Addressing Mode Evaluation (Sheet 2 of 2)
Floating - Point Instruction Formats

Cost Summary

Detailed Documentation

LLM Parts and Power Estimates

PAGE

10
35

36
37
38
39
40
43
44
152

4
{



SECTION 1
PURPOSE

This document is a final repoft summarizing all facts and conclusions
found and drawn in the course of fulfilling DAIS Study 33615-76-C=-1292, often
referred to as the "DAIS STUDY." The purpose of the contract has been to
establish a modified instruction set for the present DAIS computer (AYK«15)
and to select a subset of this instruction set to implement a lower perfor-
mance, upward compatible computer, This report serves as a basis for the
definition of an upward compatible computer family for the Air Force.

A preliminary hardware design of the lower performance computer was
then performed and is included in this report.

Finally, the impact of modifying the present DAIS computer (AYK-15) to

implement the instruction set modifications was investigated,

1.1 INSTRUCTION SET CHOICE

At the outset, a preliminary instruction set was chosen by the AFAL for
Westinghouse's use as a baseline in its analysis to determine an optimal
instruction set, from a hardware/firmware vlewpoir}t aé_ \Véll asa programe
mer's, for the proposed computer family, Paramq.ﬁnt in the choice of this
instruction set (Appendix A of the original ccntract;"'SOW) was the need to
conserve the actual memory space required to encode operational avionics
programs., It was recognized that the best way to implement this saving was
to create single-length memory reference inscructions (16 bits long) which
could generate a 16-bit effective memory address (to reference up to 65K
words).

Several new addressing modes were proposed as methods of synthe-
sizing l6=bit memory reference instructions:

a, Register Indirect Addressing




b, Ragister ndirect With Auto Incremant
¢, Dase Relative Addressing

d. Instruction Counter Relative Addressing
¢. Immediate Short Formats

{, Lmnedlate Long Formats

Qf these new addreseing modes the most significant in terms of soft-
ware officiency (defined by AFAL purely in terms of the total number of
16=bit words required to code programs) were deiermined to bs Register
Indirect and Base Relative addressing, Since both types are each capable
of synthesizing 16-bit memory reference instructions, they were posed
ag alternatives in the selection of the final instruction set. Their relative
strengths were then explored by coding a sample avionics problem
supplied by the Air Force in each instruction set (i. e., Register Indirect
and Base Addreasing).

1.2 HARDWARE MODIFICATIONS TO PRESENT DAIS COMPUTER

After tho software analysis of the proposed instruction sets was
completed, the task of implementing the addresaing modes within the
framework of the prasent DAIS computer was studied. ThLis was undertaken
in two ways: first considering only firmware (microcode) caangea to the
present AYK=-15 computer with no hardware changes, and secondly with
complete freedom to modify or add to hardware as well as firmware.

At this point, tite feasibility of the goal of 30 perceat improved software
efficiency over the present AYK-15 computer with the new addressing modes
was analyzed with respect to hardware/firmware/cost tradeoffs, and a final
instruction set chosen.

1.3 DESIGN OF LOW LEVEL DAIS MACHINE (LLM)

Another concern in the choice of the optimal instruction set was the
feasibility of subsetting the final set for the lsss powerful members of
the computer family. This subsetting also had {o maintain an ""upwards

compatibility' within the family, meaning all instructions used by the

tJ




MMow level'" machines would be contained in the 'higher level'' machines.
This insures that operational software which would run on the low level
machine would also run on any of the higher level machines in the family.
Westinghouse and AFAL then chose one such subset of the final
instruction set for use in its design of a low=level machine (LLM),
Generally, this subset contained all instructions of the final set except
the floating point arithmetic and double-precision multiplies and divides,

keeping the LLM oriented towards a simple, fixed point, front-end
processor., (Subsequently, floating point arithmetic was added to the LLM

during the design phase.)

A preliminary hardware design of the LLM was then performed. Para-
mount in this design was the use of the 2900 family of bipolar LSI logic,
which has emerged as a front-runner in the rapidly-expanding technoclogy of
the LSI field. As currently supplied by Advanced Micro Devices (AMD),
Motorola, and Raytheon, this logic family meets Mil-Spec performance
criteria, provides low parts count design with low power consumption, and
is reliably available on the market. The AM«290! four-bit microprocessor
slice ig also structurally compatible with the MM=~5701 (used in the AYK-15),
making the Li.M design directly applicable to the AYK=-15,

The primary difference in the two instruction sets was the two
addressing modes. Each set contained a ''core'’ of present DAIS

instructions (referred to as '"DAIS Baseline').

The AFAL supplied a set of three sample avionics programs (DAIS
Benchmarks |, 2, and 3) which are detailed in the docuxr'xent specification
number F44615-75-R~1154, Of the three, BENCHMARK No. | was chosen by
Westinghouse for coding in the two candidate instruction sets.

BENCHMARK No. | was divided into six program segments as
follows:

(1) Decision and Control

(2) Arithmetic Computation No. 1 and 2

i




(3) Arithmetic Computation No. 3

(4) Arithmetic Computation No. 4 and 5

(5) LIMIT Subroutine

(6) HMSANG Subroutine
This partitioning was made both to facilitate documentation and to provide
for statistical comparison. It isolated Decision and Control, arithmetic
processing, and certain subroutines for individual scrutiny.

The statistical comparison was done in two reference frames. First,
the relative software efficiency (as defined in Paragraph 1. 1) of the two
instruction sets {rom the coding of Benchmark No. | was analyzed.

Then the frequency of usage of the non-DAIS Baseline instructions

(as defined earlier) of each instruction set in the coding of the program
was analyzed. This highlighted the relative "strengths' of the new
instructions in each set by pointing out how useful each was in solving

the Benchmark problem.
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SECTION II

INSTRUCTION SET DEFINITION

2.1 FAMILY CONCEPT (UPWARDS COMPATIBILITY)

If a set of computers, all with varying degrees of processing capabili-
ties, are to be considered a computer '"family, "' there must be a direct
interrelation among them. A valid measure of the notion of a computer
family is the ""upwards compatibility'' of the machines. This can be
determined directly from whether or not a fully operational program
written for a smaller member of the 'family' can be run directly on a
larger family member with the same results,

To this end, the computer family must be '"upwards compatible'' in
terms of software. An instruction set for the ""higher' level members
of the family should be conveniently subsettable for the ''lower' level
family members.

Furthermore, a hardware compatibility must be maintained within
the family. A fixed set of machine characteristics should be incorporated
in each family member, with extensions added to this basic set for the
higher level machines. This is done to insure family integrity in data

formats, inte-rupt service, and the like.

2.2 SOFTWARE EFFICIENCY STUDY OF NEW ADDRESSING MODES

As outlined in Paragraph L. | of this report, two candidate instruction
sets (base relative and register indirect) were assembled to compare the
relative strengths of the register indirect and base register addressing
formats, The register indirect instruction set was as defined in Appendix
A of contract F33615-76-A-1292. (DAIS Study) The base addressing inst-
ruction set used was as defined in the Westinghouse-prepared document

entitled DAIS Processor Support Software (specification no. MNZ55R818).




a. RESULTS OF SOFTWARE ANALYSIS
With the Benchmark completely coded in both the Register Indirect and
Base Addressing sets, an algorithm was devised to measure the relative
software efficiency of the sets. Using the line numbers associated with
the program listings, a numerical equation for computing the number of

16~bit instruction words needed by each program segment was formulated:

ANi = (END-BGN) - CMT
BNi = (END-BGN) « CMT
Where:
AN = The number of words (inatructions plus literals) required to
code in AFAL instruction set.
BN = As above for Bagse Register instruction set.
END = Line number of last line.
BGN = Line number of first line less one.

CMT = Number of comment lines.
andi=12,...,6 corresponding to one of six program segments.

Substituting into these equations yielded the following results:

(1) Decision and Control ANl
AN, = (207=19) ~ 14 = 174 BN S 1. 32
BN1 = (177-19) =« 14 = 144 1

(2) Arithmetic Computation No, 1 & 2 ANZ
AN2 = (195-3) = 2 =190 BN C L 41
BN2 = (140-3) = 2 =135 2

(3) Arithmetic Computation No. 3 AN3
AN3=(97-3)-5=89 BN = 1. 34
BN3 = (75=3) = 7 = 65 3

(4) Arithmetic Computation No, 4 & 5 AN‘4
AN = (172-3) = 3 =166 _BN =1, 20
BN4 = (l44-3) = 3 =138 4

(5) LIMIT Subroutine ANS
AI\I5 = (39-3) - 1 = 35 BN G .03
BNS = (38-3) - 1= 34 5
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(6) HMSANG Subroutine ANé
AN, = (98-3) = 2 = 93 m— = 1,24
BNZ = (79~2) = 2 = 75 6
TOTALS: AN = 1.26
AN = 747, BN = 591 BN ’

These results show the Base Register set of instructions required less
program memory than the AFAL set in all six program segments. In
total, the AFAL set used 27 percent more program storage than did the
Base Register set.

In fact, the AFAL get requires more storage than is reflected in the
above figures. FEach time a unique address is loaded into the general
register used as the ''indirect register’'' an additional location is required.
The required word holds the constant whose value is equal to the address in

question, For example, on page 51 of the program listing, three locations
would be required to save the values loaded into register A4 on lines 59, 63,
and 74 respectively. This is different from the base addressing mode,
which can address uniquely within its 8-bit displacement range (256 words)
with the original base loaded only at the beginning of all references within
its boundaries.
b, INSTRUCTION UTILIZATION (AFAL)
Of the 115 AFAL instructions conly 17 were used in coding the Benchmark

problem. A detailed list follows:

INSTRUCTION NO. OF TIMES
USED
(1) RDA 1
. (2)  IRS 2
(3)  RDS !
(40 IRM 2
(5)  RDM 1
(6) ~ RDD 1
(7}  RST 8
(8)  IRST 17
(99  DRST 2
(10)  IDST 9
(11) IRL 7
7
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(12) IRDL 2
(13) JRU 12
(14) JREQ 7
(15) JRGT 9
(16) JRLT 9
(17) RSB 2

The ratio of instruction types available to instruction types used: 17/115
=0.15

The ratio of the number of Register Indirect instructions (of all types)
used to the total number of instructions required for each of the six pro-

gram seg..ents are:

(1) 14/117 = 0.12
(2) 13/137 = 0, 09
(3) 6/55 =0.11
(4) 16/111 = 0. 14
(5) 12/27 = 0. 44

(6) 0/67 =0.0
TOTAL 61/514 = 0.12

c. INSTRUCTION UTILIZATION (BASE ADDRESSING)
Of the 60 Base Addressing instructions only 18 were used. They were

as follows:

INSTRUCTION NO. OF TIMES
USED
(1) LB, BRS 55
(2) STB, BR5 45
(3) AB, BR5 9
(4) SBB, BR5 7
(5) SBB, BRé6 1
(6) MB, BR5 15
(7) DB, BR5 2
(8) DLB, BR5S 18
(9 DLB, BR6 1
(10) DSTB, BR5 20
(11) DAB, BR5 14
(12) DSBB, BR5 13
(13) JCRI, EQ 6
(14) JCRI, LT 10
(15) JCRI, GT 8
(16) JCRD, EQ 1




(17) JRI 4
(18) JRD 3

The ratio of instruction types available to instruction types used: 18/60
= 0. 30.

The ratio of the number of Base Addressing instructions {of all types)
used to the total number of instructions required for each of the six
program segments are:

(1) 70/118 = 0. 60

(2) 53/120 = 0, 44

(3) 29/55 = 0,53

(4) 59/116 = 0. 51

(5) 9/25 =0.36

(6) 13/60 = 0.22
TOTAL 233/494 = 0.47

These ratios show the set of base addressing instructions to be more
applicable than the register indirect addressing instructions in a typical
avionics problem (such as Benchmark No. 1), both in having more of its
instructions applicable in the codings (30 percent to 15 percent) and the
overall frequency of their use (48 percent to 18 percent),

Table 1 summarizes the above figures from the comparison of the
two instruction sets,

d. CONCLUSIONS OF SOFTWARE ANALYSIS

In terms of software efficiency, it is apparent register indirect
addressing is a poorer choice for a short memory reference instruction
mode than base register addressing, We can see, from our coding of
Benchmark No. 1, a significant savings in memory utilization with the
base addressing mode (27 percent less memory space than register
indirect).

From the view of utility of instructions, the base register addressing
mode again appears to be a better choice, A larger percentage of avail=
able base addressing instructions was used (30%) than register indirects

(15%), and these instructions were used with over twice the frequency

N R
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TABLE 1
INSTRUCTION SET COMPARISON

Program Total
Segment (1) (2} (3) (4) (8} {6) Pregram
MEM Usage *  22% | 41% 34% 20% 3% | 24% 27%

x (AFALY

N (BA)

AFAL instr 38% 9% 11% 14% 4% 0% 18%
Utilization*®

BA Instr 60% 44% 53% 51% 36% | 22% 47%

Utilization **

Notes: * Reflects the percentage by which the AFAL program storage
requirement exceeded the Base Addressing program storage
storage requirement.

** Reflects the pergent of the total instructions which were AFAL {or BA)

77-0813-T».-1

(47 percent to 18 percent) than the register indirects in the solution of
Benchmark No. 1. This indicates the base addressing instructions are
"'richer' in utility for solving typical avionics problems than register
indirects, despite being almost half as small a set of instructions (60 to
113). This is also a plus for base addressing, as less instruction ordey

types are necessary for greater utility.
In the process of analyzing the proposed addressing mode changes, many

conclusions wére reached by the programmers who performed the actual
coding. What follows is a summary of their comments about the proposed
instruction changes.

For purposes of this discussion, the following instruction word field
definitions are used

OT =« order type code

Rl\ general register RO, ... RI5

R

EA generai register used to designate an address

t
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RB - general register used as a base address register
D - displacement field

N - Dbinary number

OCX - operaticn code extension

EXP - exponent

2.2.1 Register Indirect

Instruction format: OT
R.A REIA

16 98 5 4 1

Register Indirect addressiag is an efficient addressing mode when there are
repeated references to the same location. When combined with auto=
indexing this advantage is extended to enhance references to adjacent
locatinns. As can be imagined, if a program's data can be structured
sequentially the register indirect addressing can provide an increase in
software efficiency over double word ingtructions.

However, if the data base cannot be structured in sequential nature (as
will typically be true of all global data blocks), then register indirect
addressing wiil be of very limited use. As an example, coansider the two
subroutines below. Both subroutines are constrained to use data from a

global block of data asg is typical of many data structures.

SUBROUTINE A GLOBAIL DATA SUBROUTINE B
RO =A/B * C/D VAR A RO:('—%)#C+A
VAR B
VAR C
VAR D

Structured vs Non«structured Data
Both subroutines are required to pe=form operations from left to right
in order to prevent overflow or underflow. As can be quickly appreciated,

Subroutine A is ideally suited for irnplementing with register indirect

11
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addressing since its parameters are stored in the exact sequential order
they are needed for computation. However, Subroutine B reqguires a
different ordering of the global variables in order to use register indirect
addressing. Of course, some compromise of the sequence of the four
variables may be arrived at to allow both Subroutine A, and Subroutine

B, to utilize register indirect addressing of their shared variables.
However, as the number of users of the global variables grow, the task
of organizing the data in an optium fashion for each subroutine user
becomes truly Herculean.

It is primarily for this reason that register indirect addressing is
inadequate for the computer family. Additionally, once a program is
written, the order of storage of the variables may never be altered
without a major rewriting of the program itself. This makes program
revision doubly difficult and is certainly not in keeping with good programs-
ming practices.

2.2.2 Base Relative
Instruction format; OT R OFFSET

B
16 10 98 1

In the process of arriving at the present set of Base Relative instruct-

ions, Westinghouse relied heavily on its experience with the predecessor
of DAIS, the Millicomputer. This machine used a similar form of base
addressing with an eight-bit displacement.

Although not as convenient for coding as double-word instructions, base
addressing has proven effective in reducing the memory required to per-
form avionics problems., Inherent in the use of base addressing is a
careful planning of the data structure in order to take advantage of the
limited addressing range. It is for this reason that four base registers
were chosen. Ina typical problem R4 would be used to access a list of

global data, Similarly, RS would be used to access all local variables
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while R6 would reference a block of '"'scratch pad'' for computation and
intermediate results. The last base register, R7, would then be free.

The main disadvantage to base addressing is the restriction to a single
accumulator. This definitely presents problems when compared to
multiple register capability., However, the full set of register to
register instructions, as well as the double word instructions, are
available when it is necessary to perform operations on registers other
than RO,

The base addressing instructions are not intended to be used solely in
a particular application but rather as a supplement to the normal AYK-15
ingtructions when memory efficiency is desired. To this end they would
be used or disregarded as the particular application dictates.

2.2.3 Immediate Short

Type l: Instruction format: oT R, SD6 - DO
16 13 12 98 1
(D6 - DO is a signed seven-bit integer)
Type 2: Instruction format: oT RA D3 - DO
16 98 54 1
(D3 - DO is an unsigned, four-bit integer whose

sign is determined by a bit in the Order Type code field)

Type !'s format for the immediate short would require 48 order type
codes to implement only three types of instructions (Load, Add, & Com-
pare). Since this comprises close to 20 percent of the total number of
order types available, their usage would have to be extremely high to
justify their inclusion. None of these instructions were appropriate for
use in the software analysis performed. This high number of order types
is too much to pay for three instructions which could not be uesed in the
programs coded.

Type 2's format requires fewer order type codes (six for the three

instructions mentioned above), but again has a sirmilar lack of utiiity.
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The value of an immediate short instruction comes into focus when a
large number of calculations are done with small integer constants, such
as one, two, and the like., This was not the case in Benchmark No. 1.
Further, since short instruction types are the primary goal, the load
and add immedia‘e short instructions may be performed with the more
general base addressing instructions. (This would require the alloca-

tion of a literal in a global data block).

2.2.4 Jump Conditional (IC Relative)

Instruction format: oT SD6 csiee DO
16 9 8 1

IC = IC+(D6-~nDO)

This addressing mode, whose signed displacement allows conditional
jumping within 127 locations of the present IC value, is definitely
advantageous in increasing software efficiency. In solving the Benchmark
problern it was applicable for use in approximately 10 percent of the entire
program. It is an ideal short format for program loops and small distance
jumps,

2.2.5 Jump to Subroutine (IC Relative)

Instruction format: QT RA SD6 e e e DO

16 13 12 98 1

It is questionable that subroutines could be located within the range of
this instruction with high frequency. Unlike the jump conditional instruct-
ion discussed above, most subroutines will not typically be co-located to
their calling points in the main program, as illustrated by the Benchmark
program, This is not a desirable instruction.

2.2.6 Stack (PSH/POP)

We would agree with AFAL in its recommendation for register to

memory stack instructions. Since multiple stacking and unstacking of

14
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registers is desirable in many program applications (subroutines, argus=

ment passing, interrupt save status, etc. ), we would suggest the following

formats;
Push instruction: oT N RA
16 g9 8 54 1
RA""’RA-#N? -+ STACK
Pop instruction: oT N RA
16 9 8 5 4 1

Top N locations on stack — *RA-\I’ cee RA}

{R15-N-1) = RI5
It is assumed that R15 is the implied stack pointer. Therefore, the PSH
and POP instructions may be used for handling multiple registers. Of
course, if N=0 a single register will be transferred.
The use of the stack as an argument-passing instrument is detailed in

Paragraph 2.6, Re-entrant Subroutines, of this report.

2.2.7 Immediate Long Formats

Instruction Format:

ocC RA oOCX I
16 9 8 54 T16

This becomies the format for all immediate long instructions. KEach of

the 16 possible instructions is distinguished by its code in the 4-bit
extended op code field OCX. Using the OCX field as such, eliminates any
indexed immediate long instructions.

The advantage of this format comes frorn the abiliiy to compress all the
AYK-15 immediate addressing instructions into a single order type code with
unique OCX codes, However, the ability to index the operand is sacrificed.

Since immediate addressing is not an important addressing mode (never
used) in Benchmark No. |, it would appear that changes to the immediate

a ddressing structure of the AYK-15 have little impact on software efficiency,



o VNEW DATAN FORMATS

A wuitable wet of data formats was to be chosen for the computer family,
hoth tor {ixedwpolnt and floatingepoint numbars. Both hardware and soft=
ware (ransaffs were made for aach format,

Jodol PisedoPolut Multiply und Divide

A fine f=point number notation must be considered when fixed=-point multi-
ply and divide instructions are desigried and implemented. The choice for
sach a nptation comes down murely to chocsing the position of the binary
point. I e binary point is placed at the left end of the 16-bit number,
hatweon the sign bit and magnitude bits, the machine is called fractional. If
the sign bit is placed at the extreme right end of the number, at the right of

the 15 magnitude bits, the machine is considered to be integer:

Fractional 31. XX X

16 L-—---.--binm-y point
Integer | sT xx X.

16

t- binary point

Since the choice of {ractional =r integer representation has no signi-
ficant mvact upon the hardware, the choice is truly one of convention.
Thris ig iltustrated by the widespread use of both conventions by the mili-

tary computer community:

MACHINE MANUFACTURER NUMBER (ONVENTION

(h CP-1138

(HARPOON) Weatinghouse fractional
(2) AN/YK-15

(DALS) Westingnouse fractional/integer
(3) SKC-2000 Singer-Keaarfott fractional
t4) AP-1 IBM fractional
(5) 4-Pi 'TBM fractional
Ay AN/UYK. 30 Hughes Aircraft fractional
(7)) AN-UYK-20 Univac integer




x The fractional representation is more common, but again, this is
merely a convention. Perhaps the only area where one notation is pre-

ferable would be when calculating indices into an 2 rray of data, Here,

b integer representation would be more convenient.
Since AFAL has expressed a preference for integer notation, we would
A A propose that all fixed-point multiplies and divides be made to conform to
Ly the integzr format,
| Also, we would recommend that single precision multiplies return a
full 32-bit product. This allows for retention of added significance during
single precision computations and is common practice. A summary of the
proposed multiply and divide instructions follows.

a. MULTIPLY

() 16-bit MPY (M, MR, MI, MIM)
- MPY algorithm is integer
. - 32-bit result returned in RA and RA+ | {where RA is even)

(2) 16«bit MPY (MS, MSR, MSI, MSIM)
- MPY algorithm is integer

- l6-bit result returned in RA

(3) 32-bit MPY (DM, DMR, DMI)
- MPY algorithm is integer

- 32-bit result returned in RA' RA + | (where RA is even)

b, DIViL'E
(1) l6=bit Divide (>, DR, DI, DIM)
- Divide algorithm is integer
« 32~bit divident in RA' (RA + 1) is divided and quotient

returned in RA and remainder is returned in RA + 1 (RA is

i sven)
(2) 16-bit Divide (DV, DVR, DVI, DVIM)
- Divide algorithm is integer
- 16~bit dividend in RA is divided, quotient returned in RA'

= remainder returned in RA + | (RA is even)

17
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(3) 32-bit Divide (DD, DDR, DDI)
- Divide algorithm is integer
- 32-bit quotient is returned in RA and RA+ ., remainder iy

not saved

2.3.2 Floating Point Format

The choice of a floating point format presents a different tyge of pro=-
blem than the fixed-point choice. A floating-point format definitely impacts
the amount of hardware necessary for floating~point calculations, Its i
choice can also affect a2 utility and readibility to the programmer.

Westinghouse, in its present AYK~15 configuration, has used the following

32-bit format for its single-precision floating-point word:

e 24 bits ol 8 bitg ———i
S .MANTISSA S EXP
mantissa sign-& Lmantis sa binary L exponeat sign

point placement

Each bit of the 24-bit mantissa (fractional potation)is as follows:

{(signi 27t 272 272

The exponent (8 bits) is in a two's-complement notation, with the follow~1.v"
ing format:
{(sign) 2° 2° ... 2°)
On a sliding scale, from hexidecimal 0016 to FFlb' the exponent would

-1
appear as follows: Fr 71 2

go + 2748
77 + 2 127

0

06 < 2
The AFAL has suggested a slightly different format for a 32-bit

{loating point number:

32 31 30 24 23 l

s s EXP | . MANTISSA
mantissa R Le.\:ponent l—binary‘ point placement
sign sign

18




The mantissa, while separate from its sign bit, has the same J4-bit
meaning as in the Westinghouse format. The AFAL has suggested, hows-
ever that the 8-bit exponent be considered as an excess«l28 number,
meaning the actual exponent value is "offset' by positive 12810. Cna
hexidecimal sliding scale this looks like:

FF T o127

L

2O

w4+ 27}

@
{
[

09 A o128

The two notations give both the same mantissa significance and
exponent range (128 « EXP < 127). However, their individual placement
in the 32.bit word field turns into a non~trivial difference.

From an aesthetic viewpoint, both formats have pluses. The Westing-
house notation may be slightly more readable, being in the familiar

o E
scientific notation order (sign). Mantissa x 2 (SEMEXP o aFarL

-12
notation, on the other hand, has a floating point zero (0 X 2 8)

equivalent in hexidecimal of all zeroes (00000000 ,) where the Westinghouse

16).

The individual programmer can also find merits to either convention.

16
format is hex 80 (00000080

In the AFAL format, a relative measure of the sizes of two floating point
numbers can be obtained by comparing their integer values, as the major
size indicator (exponent) is in the most significant hits of the word and is
on a graduated, smallect-to-largest linear scale. This does not "drop
out' directly from the Westinghouse format.

The Westinghouse format has the programmer's advantage ot being

directly accegsible to exponent scaling via the machine's byte-mode

19
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instructions, as the exponent falls on an eight«bit boundary. The programmer
can do a load byte from memory, add, and store byte to accomnlish this

directly,
These differences pale, however, when compared to the differences in

the hardware irmplemented for floaiing~point arithmetic. The Westinghouse
format makes it simple to "strip' the exponent from the mantissa for
processing, and since the exponent is in two's complery;ent notation, a
simple addition or subtraction provides the proper new exponent in multi=
plication or division directly, Exponent over or underflow also falls out
directly with no new or extra hardware, because of the four-bit slice
structure of the 290L

The mantissa is also conveniently handled once the exponent is stripped
away., The eight bits in the exponent can be directly zeroed out without
altering the mantissa value, as they are located in the least significant
portion of the 32-bit word., Mantissa overflow in addition or subtraction
is also obtainable with no extra hardware.

Floating=-point arithmetic becomes much mox;"e difficult with the AFAL
number representation. The exponent does not fall on an eight-bit bound-
ary, making normal operations on it (adding or subtracting for multiply
and divide, or direct number scaling) somewhat more difficult., Also,
special hardware must be added to detect exponent overflow or underflow.
More hardware and/or firmware is necessary to strip this exponent away
for computation.

!dantissa handling is also more difficult, The eight exponent bits can
no longer be simply zeroed out, as they are located in the most signifi=
cant portion of the fraction. Instead, the sign bit must be tested and
propagated through these eight bits. This requires yet more special
hardware. And still more extra hardware is necessary for mantigsa

overflow/underflow detection.
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The arnount of extra hardware necessary for fioating-point computations

(approximately 15% of the parts count) with the AFAL representation outweighs
any advantages it might have from an aesthetic or programmer's view, We
recommend the use of the Westinghouse representation on this basis.

2.3.3 Extended Floating~-Point Arithmetic

Two extended floating-point formats were also studied, The first was a
three-word format, with an eight-bit exponent and 40 bits of mantissa,
compared to 24 for the single-precision format. The second was a four-
word format, with 56 bits of mantissa,

At approximately three and one-half binary digits per decimal digit of
accuracy, roughly seven decimal places are obtainahie from the single-
precision format, l2 from the three-word extended notation, and 17 from
the four-word format,

While the extended floating-point formats do afford an increase in
accuracy, ther~ are several points that are well-worth pointing out:

a. When making calculations on extended floating-point numbers,
the number of internal registers necessary becomes rather large. A
multiply instruction with a 48-bit number requires six registers; for 64
bits, eight registers are necessary. This can severely limit the usage of
other available registers for other variables.

b, As the width of the extended format increases, the amount of
extra hardware necessary in the EAU (Extended Arithmetic Unit) increases
drastically. In jumping from a 24-bit mantissa to a 40-bit length, an
extra eight bits must be added to the EAU, which is of 32-bit width. This
is an equivalant of 10 to 12 16-pin DIP pack equivalents. And to go to 56«
bit mantissas from 40 bits, another 16 bits on top of the eight already
mentioned are necessary., At 1N to 12 16-pin packs per eight bits, it would
cost 30 to 36 l6-pin pack equivalents over the presunt 32-bit EAU to

o process the 64~bit format over the 32.bit siagle precision notation,
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¢. The added hardware in the EAU would also slow down calcula-
tions in the single-precision format, Since the ''extended" EAU would
"use'' all of its hardware even in single-precision mode, several clock
times may be wasted in clearing out or sign-extending the upper parts of
the registers not used in single precision.

In the light of the above mentioned complications, realizing that the
single-precision format is accurate encugh for many applications, we do
not recommend implementing the extending floating-point formats,

2.4 CONTEXT SWITCHING

Context (or Mode) switching refers to a8 major change in the processing
"'state'' assigned to the computer, as would often be encountered at soft-
ware breakpoints.

The complete '"state! of the computer is defined by:

a, The current value of the IC.
b. The Interrupt Mask.
¢. The Arithmetic Flags (Overflow, Negative, Zero)

Context switching is accomplished by an orderly replacement of these
three quantities by a new get corresponding to the ''new state'' of the
computer, Referring to these three quantities as Program Status Words
(PSW's), context switching is performed by '"loading the PSW's, "
Similarly, interrupts may be handled in the same fashion by simply loading
in new PSW's to define an interrupt service routine.

2.4.1 LPSW Instruction
A new instruction (LPSW) would be added to load the three PSW words

(IC, Arithmetic Flags, Interrupt Mask) from successive memeory locations

pointed to by the effentive address. The instruction would be 32 bits long

and of the format below.

LLPSW Xa-X Rx AF
16 9 8 5 4 1 16 1

Execution of this instruction will then accomplish context switching.
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¢4 o Interrvupts

n keeping with the concept of context switching, the hardwa re interrupt
saquence would be alterad. The present DAILS rmachine uses two fixed
memory locations to vector each of the 16 possible lavals of ‘ntervupts.
The first memory tocation would be re«defined as the address of whare to
store the current PSW's, The second memory location would be similarly
re-defined Lo be the address of the new PSW's to be loaded into the com-
puter. As is customary, this would be accomplished under hardware

control,

In schematic form. an interrupt would be handled as follows:

VECTOR TABLE LINKAGE
A A e e N e
,,._—n-""-—“ .
Hardware LPTR -»--O LD MASK - Compuzar State
Interrupt SPTR QLD FLAGS at Time of
e~ oLD IC Intarrupe
LPTR - Linkage PointeR Sl e aae
- €
SPTR - S.rvice PointaR o ~—
New Computer NEV/ MASK ]
PSW to start NEW ELAGS
service routine
NEWIC
LA T N A

Of course, a return from interrupt would be accomplished by executing
the LPSW instruction using the value (LPTR) for an address field.
2.4.3 Priviliged Modes

In data processing type environments, some machine instructions may
be reserved for execution by '"privileged' users only, This is typically
desirable where the uger may be inexperienced which requires that the
computer's operating system must be protected. However, this ilas not
generally been a problem with military computers due to the high level of
refinement enjoyed by an operational program prior to its inclusion in an

operational environmaeant,
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Navertheless, should a privileged mode of oparation be desirable, it may
be cnteved by a control bit within a PSW word,

2. 4.4 Multinle Ragister Sats

The most common scheme adopted by the industry is to offer two sets
of registers, thus allowing one to be used for processing interrupts. This
obviates the necessity of storing a machine register upon interruption.

Should a second set of working registers be desirable, its selection may

be indicated by a bit in a PSW,
2. 4.5 Lxtended Memory Addressinyg

The present DAIS addressing capability extends to 16 bits, or 65K of
memory. This can be extended through the PSW by the inclusion of a
block register bit or bits in the word, Each time the PSW ig loaded, a
block register would also he loaded with the bit value in the PSW. This
register would hold the block value until a new PSW is loaded, providing

upper bits for memory referencing.

We recommend a one-bit block register, giving up to 130K addressing,

- . G TTITY el s ar s ek $OMTWI e A samaay AR TGS B

ahiai oY Y et




2, 4.6 PSW Formats

Tha three PSW words wauld be of tha furmat below:

Interrupt MASK PSW1
)
Lowest level
I Highest level x .
(1=0n, 0= 0ff) (1=0n,0-0f)

N o Rg | M |1 |8 !x —X | Pswz

Z
16 T $ 4 4 t 1
i Block Register
Interrupt ( 1 = On)

Made { 1 = Exac, 0 = User)

Registar Sut

Zeru Flag

Overflow Flag

Negative Flag

IC at Time of Interrupt PSW3
1 16

2.4.,7 Re-Entrant Subroutines

Subroutines are defined to be '""Re-entrant'' whenever they may be
interrupted by a hardware interrupt and subsequently called prior to their

completion of the interrupted computation. Therefore, all intermediate

results from an interrupted subrovutine must be saved and then restored
when the interrupted subroutine is allowed to resume.

If intermediate results are entirely contained within the register set
then simply preserving the register set upon interruption is sufficient for
iriplementing re-entrant subroutines, However, if intermediate values
are held in scratch xnemory, then this memory must be reserved at the
time of interruption (and not returned for use as cormnon scratch). The

collection of information necessary to ''re-enter'' an interrupted subroutine
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(i. e., the intermediate values, etc.) at the point of interruption is said to
be "Interrupt Linkage. "

If a re-entrant subroutine is allowed multiple interrupts then multiple
sets of interrupt linkage must be preserved.

Not all subroutines need be re~entrant. (In fact, Westinghouse software
does not allow re-entrant subroutines due to their aforementioned
complexity). However, a generalized scheme for implementing re~entrant
subroutines on the present AYK-15 machine will be presented. Also,
alternatives to the present implementation will be presented.
2.4.7.1 Subroutine Argument Passing

By convention, arguments will be pushed onto a STACK prior to calling
a subroutine. Therefore, if N arguments are passed to a subroutine, the
calling program will first push all N arguments onto the stack prior to
calling a subroutine. Presumably the arguments will be pushed in the order
the subroutine requires their use. Also, the calling program will assign
a scratch memory area to the subroutine by passing a starting address to
the subroutine as an argument,

At the time of a subroutine call, the stack will be configured as follows:

ARG #N (Argument Used Last)
ARG #2
ARG #1 (Argument Used First)
( STACK PTR. ) s
A PN YW

2.4,7,2 Subroutine Calls

2.4.7. 2.1 Present DAIS - Subroutine calls are performed by 2 jump

subroutine (JS) instruction (refer to DAIS Processor Support Software,
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p. 124). The return linkage is placed in the register specified by the Rl
field of the instruction. As described, this instruction also implements
the subroutine return. Therefore, at the beginning of a subroutine, if A2

contains the return linkage, the register set will be as follows:

A0
Al
A2 RETURN ADR MEMORY

W/\/\F\/\-\/\

Al5 | STACK PTR, —t—*| TOP OF STX

M\f\_wf‘\]

If nested subroutines are allowed, then AZ must be saved prior to the next

=~ &

L

call.

2.4.7.2.2 Proposed Change ~ Alternately, the return linkage may be

placed on a STACK sothat returns may be accumulated to accommodate
re-entrant code. An instruction to call a subroutine of the format below

would be necessary.

JSR X-X R, 11 AF
16 98 5 4 T !
IC = STK
( R +AF ) - IC

It is assumed that one of the general purpose registers would be an implied
stack pointer,

The calling sequence for a subroutine would then be:

STK ARGN
STK ARG (N=1)
STK ARG 1
JSR SRTN
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At the time of the call the stack would be:

v f
ARG #N

ARG #2
ARG #1
STK PTR—" IC

i e W el
Note that the return linkage is now on the '"top of the atack. ' The
subroutine must first ''pop the stack' to save the return linkage prior to

popping any arguments. Thus it would seem preferable to simply leave

the return linkage in a register.

Finally, a RETURN instruction must be added to pop the return linkage
into the IC. This, however, can be a short instruction since all addresses

are implied. The return instruction would be:

S

RTRN XK e
16 98 54 1
( Topof STK ) — IC

Now a2 complete comparison can be made of the two methods of handling

return linkage. Consider the two calling and return sequences shown

be low:
Present DAIS Proposed Change
CALLING PROGRAM CALLING PROGRAM
| Js A2 JSR SRTN
o SUBROUTINE SUBROUTINE
SRTN SRTN USTK TEMP SAVE LINK

]

s
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J O, AZ RTRIN

Total word to Call & Return = 4 Total words to call & return = 5

If we compare the Subroutine Overhead (number of words to link and return
from a subroutine) we find that the stacking mechanism requires one more
word. Therefore, the two methods seem nearly equivalent in terms of
software efficiency,
2.4.7.3 Hardware Implications

Employing a stacking mechanism for subroutine returns requires addi-
tion of the RROM as specified in Section 2. 5. 2.

The PSH and POP instructions as defined in Paragraph 2. 2. 6 would
require minor hardware modifications to the present AYK-15, Table 4
presents the summary of modifications necessary to the present AYK-15

‘ processor.
> Microcode flowcharts for the PSH, POP, and LPSW instructions are

presented in Paragraph 3, 3.

2.4.7.4 Interrupt Routines
If re-entrant subroutines are to be allowed, then a complete saving of

machine status (arithmetic flags, registers, and IC) is fiecessary upon
receipt of 2 hardware interrupt, Further, if nested subroutines are to be
allowed then stacking of interrupt linkages is desivable,.

2.4.7.4.1 Interrupt Stacking - Present DAIS - Interrupt linkages may be

stacked in the present DAIS machine by use of the 5TK and SM instructions,

Recalling the interrupt structure of DAIS,

VECTOR TABLE LINKAGE WORDS

. INTRPT m /{ FLAGS
NEWIC L2 LV\}:/VJ

an interrupt causes LPTR to be fetched and used as a pointer to the

- - Ky Ve g3 1t e B o S e ! BRI e v
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ttnkage words, After the arithmaetic flags and incremented IC are stored
in the linkage words, the service routine is hegun at address NEWIC,
To provide complete linkage atacking the ssrvice routine will be:
" BECINNING OF INTERRUPT SERVICE

NEWIC STK AlS, L1 .STACK FLAGSE
STK AlS, L2 . STACK IC
SM 15§, 0, AlS «STACK REGISTERS
AlM AlS, (1710) . MOVE STK PTR

BODY OF SERVICE ROUTINE

"END OF SURVICE ROUTINE

SIM Als, (1610) « MOVE STK PTR
LM 15, 0, Al5 . RESTORE REG.
USTK Al5, L2

USTK Al5, LI

LEXS Ll . RETURN

"END INTERRUPT SERVICE ROUTINE

2.5 CONCLUSIONS

2, 5.1 Summary of Propesed Changes

2.5, 1.1 Utilizing Qunly Firmware Changes

As can be seen from Tables 4 and 5, the only modifications which can
be accomimodated on the present DAIS machine with no hardware impact is
register indirect addressing. Hence, if this were the only modification

made to the present DAIS computer, new microcode could be added to the
existing machines (provided some ""S«types' were eliminated) to form the

nucleus of the computer family.
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However, as discussed in section 2, we have been unable to achieve the

Lar)

desired level of software efficiency (20% improvernent over present AYK-13)

by using only vegister indirect addressing as an addition to the present
DAIS baseline instructions, Ior this reason we would conclude that firm-
ware changes alone are not gufficient to satisfy the goals of thisg study.
2.5.1. 2 Utilizing Hardware and Firmware Changes

Section 2, illustrated that the desired improvement in software
efficiency can be achieved by the addition of base relative addressing.
Although requiring minimum additional hardware, the benefits to software
efficiency are most dramatic ( ~36% improvement over present AYKa15).
Therefore, we would recommend that the hardware changes listed in
Paragraph 2.5.1.1 be incorporated into the present DAIS machine.

These changes would require the alteration of MCIl and MC2Z, tc allow

for the addition of the RROM and S-Gates as shown in figures 2 through

3. Also, some minimal backpanel wiring changes would be necessary
between MCIl and MC2. Although requiring changes to two printed wiring
boards, these changes are, conceptually, of minimal complexity.

Therefore, incorporation of the hardware changes to accommodate base
relative addressing, is the only acceptable alternative to achieving the
desired increase in software efficiecncy and should be incorporuted into
the present AYK~15 machine.

In tables 4 through 7, each case is expressed separately. If multi-

ple cases were to be incorporated, the ''costs' in the columns labeled
microcode required, hardware required, labor, and parts are not necessa-
rily added, For example, a memory controller card would require new
artwork for one change or many changes, and microcode routines would be

shared for different changes., If necessary, new microcode storage would

be added.
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; Purpase To transiate the RA AB feids of the 6-8:t Base Relg e format
'0 register addresses
4 MBUS
<+- >
q MOR?2 PAQYL Y
4
New ROM _S‘ SROM
New 1 i ) 16 4r 16
Signa l
< Y »
DI BUS '
Additional Hardware 2 1 2 16-pin equivalent packs
h . MC1. MC2, backpane!
Changes ackpan 77 0819.VA 2
Figure 1, SROM
4
E Purpose 1Jsed 1o generate register addresses from the order type code which ‘1
1s contained m the MSB of MOR2.
MBUS
3 < Y
MOR2 } MOR1
A r
8
New ROM l !
T
PROM p 16
y
[ MNew m D" -—3 L 6
S gnat 8 1
DI BUS
Adaitonal Hardware 212 18 pin equivalent packs
Cnanges MC1. MC2. backpanel 77.0818.VA 3
Figure 2

« RROM
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Purpuse  To sign extend on address wicd tor 16 bit anithmetic with the CRU

MBUS
<+ i l s
New D = — e e gy A
. MOR2 MOR1
Signal 2T 1
- — v — —
« L . | ]
/ 7
8
New gates
¥ v
< >
Addit:onal Hardware 3 16 pin packs
[ Changes. MC1, MC2, backpane! 77-0819-VA -4
Figure 3 . S-Gates
Purpuse  To transiate the QCX field of :mmediate ong INsStrucLions 10 startinig
F addresses for pcode
MOR2
* BITS 14
[ L !
A' 4 — .
y
New ROM
?' 825115
PTSEN ey
New j’ PTS ROM
Horog 5 V——f
S.gnai
8
4
F INSV1 8
Changes require on MCY 127 4na nackpane!
4 77-0819-vA 5
Figure 4., PTSROM
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2.5.2 Final Instruction Set

Table 2 illustrates the final instruction set for the modified DAIS

computer as chosen from the findings of this study,

2.5,3 Subset for Low level Machine

When choosing an insrruction set for the "low«level machine' of the
computer family, we w. ld recommend that a subset of the instructions
of Paragraph 2. 5. 2 be chosen. Further, those instructions which required
unique hardware to implement should be excluded from this set. This will
:nable the low~level machine to reach a minimum parts count with the
ensuing advantages of low volume, power, and cost.

In keeping with this goal, we would recommend the elimination of the
floating-point instructions, as well as the double precision multiplies and
divides, Both these instruction types require unique hardware due to their
complexity.

The elimination of these instructions would be in keeping with the goal
of a low=level machine oriented towards the simple, fixed point, front-end
processor.

Table 2 illustrates, in instruction matrix form, the subset of instruct-

~

ions
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SECTLON 11!

MUDIFICATIONS TQ PRESENT DAIS

L1 MIGRQWCODR

The hardwarca and firmveara (mic vowaode) implications of modifying the
present DALS machine to include the naw instructions, addressing schemes
and floating=polnt #rithmatic formota ava pregsented In tabley 4, % and
6, ragpactivaly,

3.0 0 Iastruction Changes

) Each lnstruction optlon (table 4) and addvessing mode (table 3) ia
evaluated with vespect to six parametervs,
a. *¥0T Codes: The number of Order Type Codes required fov the

instructiun or addressing modae,

TABLE 4
NEW INSTRUCTION EVALUATION

r -
Change I QT Codes Time {usec) CPUup MCup Hard Req'd Physical Changes
_ 1. PSH | (2.8 + 1.4 N} 8 10 PROM MC1t, MC2
o RSAV cPU
3 Backpanel
2. POP R {30+ 1.6N) 7 9 | PROM MC1, MC2
RSAV cPU
Backpane!
3. LPSW 1 38 6 16 - INT
Backpanel
77.0819.TA.8
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PHES PAGR 1§ BRAT QUALTTY PRACTICALLE

. y ; / kel 0 WIU
« FRON G0 X FURNL ke TABLE

DALS STUDY ADDRESSING MODE EVALUATION

(LN
v (SHELET 1 QI 2)
d
1 ARG PHYSICAL
! ADDRESS MOLE HOYCO Y YVIME 1nae) G w o MG a0 HARD REQ'D CHANGEY CUMMENYS
N Mrme e R e T e " —~— . n
. 'V REQISYER IKDIRECT 0 2420 ! 0 CD None N
= TR R
‘e L] M 1
' .3 REQISTER NG WITHAUTOING 18 2420 . ° None .
: 1 B
T e 84 1
o !
¥ OINMMEDIATE SHOAT G) ] 2020 (] ! | pote pach MG 2
Rahpanel Axckpane!
i [ 1 NA1 1 _]
boag 98 44 ¢ N
L 4 INMEDIATE SHORT 4 2420 Q| w ’ PROM MCT. M2,
: N = 20120 0 2 PROA « St Sarh pane!
Lov_ | xxxx_[s 08 v0]
©16 13N LR 1
- ¢ 8 JUMP COND 1L REL ! .- 5 [ ] PROM MC1,MC2,
$ . - b4 J PROM + Sgates Backpanal
o, Lo [S 00 06 ]
AL 98
|8 JUNMPSUB 1C REL 16 - 8 ? PROM MCT.MC2,
i - v .- 2 2 PROM + S.qates Bagkpanel
e ’ [ ot T Txxxafs ve - 00 ,
§ |18 1317 98 1 l
. L os icrsuanvesworr () o 1420 ? 4 None PROM Jump of
. o 1 S-gatet Catry wecwni |
P ec T o ! MGI.MG2. | caseWRT
N AL 98 [N Rackpanet Hardware |
i -
I8 8T HASE REL ! 4420 @ 10 1 SAOM MC1,MC2, onty lar
r 2.020 1 3 SAOMN + S.gates Backpane! “non §'
. 0T TRa [RB Db D400 | | nnruction |
: i \6 TSR | I X
R ' @ |
. : 9 BASE HELATIVE SHORT 0 2620 20 2 PROMN MC1.MC2,
. = . 1 nandgate chip Sacupanet
& - Loc |88] o ] 1K FE
s 6 111098 N S-gates
Sy i '0 IMMEDIATE LONG @ tlor 11 1.420 ] @ 19 PT5 ROM MCE, MC2. Generate two
SR r T minar QP Back pane! new instr
o 1 0C {ra pox| 11 Cages MIM & SDIM
: 0 78 1121516 Ve
. Crrcled numbers 1elee 1o notes in text tectinn J 1
A . * Avdresting modes investigated ner SOW amengment No !
770819749

Y A\doresing mode investigaled oer SOW amengment Mo 2




| PHLS PAGL T8 BESY QUAL LY PRACTYCABLE
| JROM COL'Y FURRASILD 20 DUQ e

TANL S

B
.
-
VoD gy . 1 el . IR s
DAIR WTUDY ADDRESSING MOD BEVALUATION
oy
v g (AR RN . v
(SHWMET 2 QF 2)
AMDL ML holed amg Conuneaty for 1ghiy b
{ ‘) Phe prosent IS msche w nag uQapare U8 progeans words and 40 saare imomary cantroher
" TP IR
Q) FEAhout) e netsd) swhon eyaludting talie  h 1hal some aldiesting nocgy have v sots ol pntne
Te g tounsdhate St T s hocduw twa batdware iasihods of onplamesatation were svaluated
v o AR sl oF sach presenteg
' Q) Althaugh the number of memesy contiatiar o program Jocations iequusd for Regqister Indioct
. wvsly hign (401 s could bie reduced considacabily by @ mace pradent chowe of register indiact
‘ mitisctiont Specihicaliy, wheneyer an ‘8 type inttiuction (e specihed m DALY computer
., vatamentationh i eguired to have 3 19gister indirect formal, Lo uhigie memol ¢ contraller

o roguans locationy aee feganred  (Thete are 17 78 type ™ instryetions with reguier induact formaty
as yecibied by the contiagt SOW)

(4) The awgeution Gmes tos the Hasy Relabive Short instiueiomy hiven in taltle & 14 an average time The
T actusl et are

4 Sugle word tetch nstactiony 2 6w
QP cove O3,01.02.03
i 08,00.¢A,.08
Q€00 06,08
IRRRIRPAK]
1Woth 1647
20,2028 2}
. JN.31,32,33
I 34 36,38,
L I b Single wotd store instrucions 2.8 pvec
OP coxfos D4.05,08,07
v Dauble word feteh mstractions 2 6 uwc
OP Lxdes 1810 1A 1R
. 20,201,222
. 24,725,287
t Double word store nstructions 3 2 usec
OPf coday TG 1018 IF
» o Jdump comlitioral, telative 2 0 sec no branch/2.2 v sec branch
OPF coces 38,39 JA {Inciement)
3C,30 3t {Decrement)

{ Jumporelative 2 Qs8¢
OP cextes 38 Hucremaent)
37 (Decrerment)

G) The lmmadiate Long Instructions format nvestigated ehminates indexed ymmediate long mstructions.
This means the progiammet can no fonger do

Ro+ 3 + Ay - LIMR,, 3, RS

as one instruction, but must now do-
o A5 -+ Ry + LR
o Ry +3 Ry~ AIM

Likewise, Ry t R6 + 3+ Hy = AIM 15, 3, RS

but must alzo do, RS-+ Ry = LR

Ry +3 -» Ry = AWM

G}) The instructions MM (10 x 16 = 31) and SDIM (18 + 18 = 16) are nat presently implemented and

. the microcode necessary s included m this chart.
\ @ The range of | is 1~ 1+ 16, therefore the programmer and/or assembler will have to code the
R fo'lowing values for |:
- tig BIT VALUES
| 1 0000
{ 2 000t
o . 15 10
S & 18 it

) The CPU hardware will add 1 to | and assign the correct sign as designated by the OP code.
@ The presunt DAIS machine architecture contains a 4-bit condition status ragister with one-bit allocated
to each of tha following conditions:
i 8. Le:s than zero, lass than {condition}
. b, Equal zero, equal {comparison}
c.  Groater than zero, greater than (comparison)
d. Ovarflow, underflow, abnormal, etc
This does nat accommodate a jump on carry condition. However, the carry result is available from the
carry save flip-flop, and is used during micro-code branch conditions, By specifying a separate op code,
new micro-code ca. be writtan to yenerate the desired Jump On Carry instruction. All required hardware
axists, only firmware changes are required. i
77-0819-TA-10
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b. ADD TIME (Table 5 only): A comparison of a single precision

' " add time for the addressing mode versus the comparable time for a double
word instruction. This number is expressed as a ratio with the double
word instruction time being the denominator.

c. Time (Table 4 only): The execution time (inusec.) required for

the instruction.

d. CPU - u=-p: The number of CPU u~-program words required to
. implement the addressing mode or instruction.
, e. MC - u-p: The number of Memory Controller u-program words
required to implement the addressing mode or instruction.

f. Hardware Regquired: The additional hardware necessary to imple-

ment the addressing mode or instruction on the existing DAIS machine.

g. Physical Changes: The modules in the existing DAIS machine

which must be modified to accommodate: logic changes in order to implement

v the addressing mode or instruction,

3.1. 2 Changes for Floating-Point Instruction Formats

The changes to the present DAIS computer for the three Floating-Point
instruction formats are shown in table 6,

I. Changes required are for adding 10 new parts for the expon-
ent arithmetic and reconfiguring the three boards. However, the EAU would
still consist of one control board and two data boards.

2. Reconfigure EAU functional schematic but still need only 1
control board and 2 data boards. Forty new memory controlier u-code
locations needed to handle the extra mantissa word, Thirty-four new parts

added for exponent arithmetic and mantissa arithmetic.

3. Reconfigure EAU functional schematic and add hardware to

accommodate additional mantissa length., For this format the EAU will be

made up of one control board and three data boards.




3.2 HARDWARE/FIRMWARE COST SUMMARY
The comparative costs associated with the evaluation results shown in
tables 4, 5 and 6 are presented in table 7. Material costs are
expressed in 1977 dollars for modifying one computer, I\'on-recurriilg costs
are expressed in labor hours and include:
a. electrical and micro-code design
b. design verification

c. design documentation

d. printed wiring board artwork changes
Recurring costs are similarly expressed in labor hours and include:
a, assembly and test
b. matrix plate wiring changes
c. system functional verification
d. system acceptance test
3.3 DETAILED DOCUMENTATION
The 20 new instructions for the DAIS machine are listed in table 8.
This table also details which micro-code routines are required in the CPU,
MC, and EAU, The instruction description, flow charts and timing dia=-

grams for each of the 20 instructions follow table 8.




)

TABL

COST SUMMARY

COSTS ASSOCIATED WITH TABLE 4

Parts Cost {S) Non-Recurring Recurring
Labor {HR) Labor (HR)
1 PSH 4950 1184 109
2 POP 4950 1184 109
3 LPSW 1300 473 55
COSTS ASSOCIATEDWITH TABLE 5
Parts Cost (S) Non-Recurring Recuriing
Labor (HR) Labor {HR)
] Reg Indr 665 205 16
2 Reg ingr 665 50 16
w/Auto Inc
immed Short 1300 430 40 f
Immed Short 710 800 206 !
v 710 750 206 '
5 Jmp Cond .70 800 206 i
IC Rel 710 750 206 '
6 Jmp Sub 710 800 206 |
IC Rel 710 750 206
7 IC Rel Short 710 790 206
. 8 ©-8it Base Rel 710 850 206
e 710 760 206
g Base Rel Short 710 1000 206 i
10 | Immed Long 710 870 206 J

43
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MNEMONIC: PSH OP CODE: gB

SHORT NAME: push onto stack

FORMAT: PSH N, R,

1 0 0 o 1 0 1 1 N R,
e —t—+—+ e +—tt
16 9 8 5 4

DESCRIPTION: The contents of registers Ra through R(a+N) are pushed onto

a stack in memory using Rl5 as the stack pointer, When completed, RI15

is incremented by N+1.

[f N=0, then only R_ is pushed onto the stack.

REGISTERS AFFECTED: R15

TIMING: (3,0 +1. 6N) wusec

[ are. | pANWCTwIGemTe -




CPY

PSH1
! -
Mme !
& MROY =
CPU — PSHY
MROY = 1 PSH1
l RAOM -+ RSAV

) C i
RROM = O 2 2
- (R15 + 1) = DO
‘b__ 3 MDCT + 1
3 {R15 + 1) — R1§
0O~ EAR |4

R,~ 0O
L 5
B NO

EAR — MBUS MROY =17

b

EAR —+ MBUS
MEMRC =0
MEXS =1

-

MDCTTC=1?

RSAV+] -~ RSAV

77-0819-VA-i4

Figure 5, PSH Instruction
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MNEMONIC: POD OP CODE: 9B
SHORT NAME: pop from stack

' A
1 0 0 1 1 0 1 1 N R
et S —p——p
16 9 8 5 4 1

DESCRIPTION: Register Ra through R are loaded sequentially from the

(a=N)
stack in memory using R15 as the stack pointer. When completed, RI15 is
loaded with (R15-N=1). The CS register is set for each word transferred.

If N=0, then only Ra will be loaded.

REGISTERS AFFECTED: Ra. through R
(3. 0+ 1, 6N) usec

(a-N)’ R15, CS8

TIMING:

48




MC
FOP

POP

CPU— POP
MROY!

T o

RROM =01

PQP3

NOP

$ ron

00—+ EAR

l POPS

EAR —»M BUS
PROCRD =1
MEXS =0

J POPE

EAR—»M 8US
PROCRO = 1
MEXS = 0

J POP7

MOEN = 0
EVOUT = 0
0DoouUT = 0

b oo

MSW —= MQR2
LSW —» MOR1
MROY = 1}

 ovom

MORY — DI

l POP10
< BRANCH PT3?

Figure 7,

ol N s N,

——
o

‘_§9_< MROY=1? >
lves
*Qp
RROM — RSAV

R15 ———e 00

MOCT + 1t
(R15-1) s RIS

{ POP3

NO
--.< MROY = 17 >

POPS

RSAV-1 ——»RSAV

| ves
— % POPE
0i — Ra
PGPS
< woerree 10 SNl
YES

IF

17-0819-VA-15

POP Instruction
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MNEMONIG: L PRw QP CODE: Wi

SHORT NAME: a4 program stalus words

FORMAT: LPSW ADDR nonsindexead
L LPSW ADDR, RX indaxad
Lo 00 bbb Lol C RN ADDRESS FIELD
A LARNE B | v 1 | T 1 { 1 1 1 A
Lo § 8 8 4 lo |
it DESCRIPTION: The current threa program statug words are replaced by three
sequential memory words located at the effective addrass.
\ This instruction is used for context switching and as & return from inters
rupt.
w‘
-}h.x-,'-";.’
REGISTERS AFFECTED: IC, CS
TiMiNG: * 4 msec
, 51
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\

g .

Ry

PN

The three PSW words would be of the {format below:
INTERRUPT MASK ] PSWI1
16 1

Lowest Leve!
Highest Level (1aON, O~ QFF)

{120N,0=QFF)

R, M | X X PSW2

rsersseseimmmesn. [NTERRUPT {1 = ON)

MOOE (1 = EXEC, 0 = USER)

REG. SET

ZERO FLAG

OVERFLOW FLAG

NEGATIVE FLAG

IC AT TIME OF INTERRUPT PSW3

77-0813-VA-16

Figure 9. LPSW Words
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PR

MC CPU

I
=

gk
LPSWX1

EAR —=-MOR1

J

W LPSW1
PTAEN = 0 CPU — CLPSW
MROY = 1
Ol + 1 —e00

LBW2
MOR! —— 0l
00 ———s EAR .l

CLPSW?2
l LPSW3 -..._.(NO MROY = 12 >
MORT — QI _
00 —EAR |ADDR FCR PSW2 & 3 vES
MOR] —» MBUS |ADOR FOR PSWI
CLPSWI W
1 PSWa

- O ——w 00
MOR! = MBUS 00 —» MASR REG
PROCAD = 1 10EN =
TAOO = ¢
DBLEN = |

LPSWS o
WMOEN = 0
EVOUT = 0
0DD0UT = 0

1
' l LPSWE

MSW —» MOR2
LSW_— MOR!
MOEN = 0 PSWI — MORI
MRDY = -

1 LPSWT

MORY —= I

l LPSW8

MOR! — DI
EAR ——a MBUS | ADDR for PSW 2 & 3
PROCRD = 1

| 17-0813-VA~1]

Figure 10. LPSW Instruction
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MNEMONIC: . OP CODE: g

SHORT NAME: floating point ADD, register-to~register

FORMAT: FAR Rl, R2
1 01 01 0 0 O Rl R2
i L l 1 Il L 1 { [l 1 i 1 1
L T T 1 H T T 1 H T i L

DESCRIPTION: rhe floating point number in registers RZ2 and R2 plus one is

a dded to the content of registers Rl and Rl plus one. The conditions status,
CS, is set based on the floating point result in registers Rl and Rl + | and
overflow. Overflow is defined as exponent overflow or underflow during the
operation, Upon overflow or underflow a floating point zero, 00000080, is

the result, Rl and R2 must be ewven.

REGISTERS AFFECTED: RlI, Rl |, CS

TIMING: 42




TYPE — PS {REGISTER TO REGISTER SPECIAL)

o)
J 407

U TPRS!

EARSEL = DO

IVIMP = 0

JADO = RS)
MCROY =1

70
S l TPRS?

CPU: RS1/762) EARSEL = 00

; 65
1PRS3

EAR — MOR1

00 -— EAR

CPU: RS2(763) MCROY = 1 R2) —=—+ MOR!
EARSEL = Do

l 5%
TRPS4
' Do — EAR

EAR — MOR2
LOEAR R2) —— MOR2Z

v
D

g

77-0818-VA-18

Figure 12, TYPE - PS (Register to Register Special)
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FLO TINGPOINT ADD Moo« MEN BA EAS I awe RY Gy}
b FA )
Ted 0P CODE Iﬁﬂﬁ | S
' FA A Rl e U1
i
FALN { 14)
P ——,
Di- Ml ~—~—e DO
FLGSEL » EAU
CRYCREN « 1
YES o ooot e 1 NO
W I
FAY g FA? 144
MOR| = (3] Rly weem—ee 00
Ql Aoreen s m———e uo
P
< tRYSAV e ) CRYSAV » 17 {1
"Ny .ﬁ........—.....f" e
FAd ; 0 A FAS 142 Y T
MOR? *——e DI MOR! e DI ~— ()
M —reeeeim 0 Bt —————ae Rij ; 1 :
FAURDY + 1 > vES '
, =17
uu] YES FALL 166 LAURDY =1 P
3 ~e MORZ wm—— DI FALQ " l- 4
[ [Je——— , 1 | Dl ——eemew R
FLGCPEN = 1 MOR2 ——— 0|
. 0
( T: ) e s
£AU ROY « 7
FAT 151
- e
IR —— 1 FA13 343
FLGCPEN » |
s 0
(00 s 0 a 26
FM10
153
I EAY
— Rl cmmeem—e 0
FLGCPEN = 0
ﬁru%nv_- 3
MOCTLOD « 0
77-0813-VA-18

Figure 14 , FAR lnstruction
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FLOATING POINT ADD

Figure 15 . FAR Instruction
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FA Al
FAl AS
0-FA4 191
AUNI = ASES
00 = NQ
Sampie 2680 32
-’
SEXP - ND 1~F AS e
Al1L = A @
q MOCTs1 ~ uOLT
L Sempte EXPQVEL ]
C-faa L 133 C-FAY L 132 2E00 0
MEMg ~ 8, [ ] C-FALFAIS gy 140150
I'OCT!DI"‘U'DCY MOCTROM-~¥OCT NQAMAL ¥ 0~ Ay
FAL = HSRLTR FAT~ MSACTA
8015 ~ A¢
C-FAy 142 C-faAd L 94 EAURDY
e
MEMg =8y Rt~ By -
apr N Exr >N ROY 4 AEXP > 1Y {
S e C-FAIOIFATE o 141°151° |
A AL ]
C-FAldL 148 C-FA) 136 Sempia ZERO 18 !
A= 8y WEMg - By l
RIR -~ 415 E) Byt Ay !
MOCT+! ~ ¥OCT MOCTe) = MOLT |
4 OPADITE i QPAQITC, l
ot HSRICTA inge HSRICTR §
X0 "o WQg - Ag ~ Ag !
0PAOSTC * Py~ QPAQITL ! Sampis EXPOVEL |
™~ —
vES YES i
1-FAL 100" !
AR~ AS.E) {
MOCTe1 -+ WOCT |
NO
0PADITC? > ]
- M
(A8 (1R} = A
INSEAT FASIN

17081%.VA-20
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MNEMONIC: OP CODE: gg

FSR

SHORT NAME. floating subtract, register-to-register

FORMAT: FSR R1, R2

DESCRIPTION: The flcating point number in register R2 and R2+1 is sub-
tracted from the floating point number in register-Rl and register Rl+ 1.
The difference remains in registers Rl and R1+ 1. The condition status,
CS, is set based on the floating point result in registers Rl and Rl+1 and
overfiow. Overflow is defined as exponent overflow or underflow during
the operation. Upon overflow or underflow a fleating point zero, 00000080,

is the result. Rl and R2 musi be even.

REGISTERS AFFECTED: RI, Rl1+1, CS

TIMING: ¥ ¢
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TYPE - PS(REGISTER YO REGISTER SPECIAL)

el .,.

CPU: RS1762) EARSEL = 0O

1 65
IPRS3

EAR —— MOR1

00 —— EAR

CPU: RS2(763) MCROY = 1§ R2j ——— MOR1
EARSEL = n

bb
TRPS4

le — EAR
| EAR - MOR?2
[ (nas R2j —— MOR2

gl
=)

17-0819-vA-18

Figure 16 . TYPE - PS (Register to Register Special)
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TYPE

FS
FSR
FSI

- ) ‘,', FLOATING POIMT SUBTRACT, RY i) —MEM tEL ca-tr — R
oy o .

0P CODE

B7

g8
B9 ESIA 521

FS

MOR!l ——e Ol
0I=Rlj ~—s 00

FS18 L 522

MOR1 ~—— DI
DI-Rlj =——e 00

FLGSEL = EAU
CRYCPEN = 1
) YES \oom .
£33 I 167
MOH] —— DI
ol ——— 00
CRYSAV = 17 3

MOR? ————w DI
Dl ——e 00

NO FS5 171
£54 170 1
MOR2 ——— 0!
I

FS12 1; 200

EAURDY = 17 /yis MOR] D1
NO 0 00, Rl
£S5 L 172
Rly ™ 00 FM8
FM8

Figure 18 .

63

B AT -

NO

FS2 166

Rll e 00

CRYSAV = 17 YES

g
F39 175
NO Rl o= D0

FLGCPEN = |
CPUROY = !
FREGLUT - g

EAUROY = 12 NES
~

NO
FS10 176

MOR2 ——— DI

FS11 177
MOR2 ~——— 0l

o —_— 00 0l ~——— DO
- ]
FM8
77-0819~-va-21

FSR Instruction
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MNEMONIC: FMR OP CODE: g

SHORT NAME: floating multiply, register-to-register
FORMAT: FMR Rl, R2

1 1L 0 0 L 0 0 O R1 R2
et p—t—t  p——

DESCRIPTION: The floating point number in registers R2 and R2+1 is multi-
plied by the floating point number in registers Rl and Rl + 1. The floating
point result iy retained in registers Rl and Rl1+1. The condition status, C35,
is set based on the floating point result in registers Rl and Rl+ 1 and over=-
flow. Overflow is defined as exponent overflow or underflow during the
operation. Upon overflow or underflow a floating point zero. 00000080, is

the result. Rl and R2 must be even.

REGISTERS AFFECTED: Rl, Rl+1, CS

TIMING: >-©
65
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TYPE - PS (REGISTER TO REGISTER SPECIAL)

C TPRS

407
U TPRS1

ARSEL = DO
{VIMP = 0
JADO = RS!1
MCROY = 1

S ; ﬂ%sz

CPU: R31(762) EAKSEL = DO

65
; TPASS
EAR — MOR1
D0 ~—» EAR
CPU: RS2(763) MCRDY = 1 R2j — MOR!
EARSEL = Do

T =
TR
fDp — EAR

EAR ~» MOR2
LDEAR R2j ——— MOR2

¥
=

17-0819-VA-18§

Figure 20 , TYPE - PS (Register to Register Special)
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FLOATING POINT MULTIPLY: (RYi, R1) * (MEMORY MEMORY + 1} — R}, AY))

FM, FMI

TYPE 0P CODE FM1 531
FM c7 Rij —— DO BUS
FMA c8

FMI cs I

Rli ——= 00 BUS

FM3 ‘ 218

MORY s—e NI
D! BUS—= 00 BUS

FMd ‘ 217

MOR2 — D
Di 8US— DO BUS

FM5 l 220
MOR| = D]
Rij+D| ——o= RIj
FLGSEL = EAU
CRYCPEN = 1

L

CRRYSAV = 1?7

| - 223
FMIA 222
NOP
NOP (ABORT)
FM8 f 24
Rlj w=—aD0 BUS
NO
{ EAUROY = 17
¢ EM10 228
FMS L 225 DZEROEMN = 0 l
. DI BUS ——RY;
DI BUS —RIj hsmméw FLAGS
TWOTTLY . 0
Wb =5

771-0819-VA-23

Figure 22 . FMR Instruction
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MNEMONIC:

FDR OPCODE: pg
SHORT NAME: fioating divide, register-to-register
FORMAT: FDR Rl, R2
1 1011 00 0 Rl R2
ettt

DESCRIPTION: The floating point number in registers Rl and Rl+ 1 is divided
by the floating point number in registers R2 and R2+1. The floating point
quotient is retained in registers Rl and Rl+ 1. The condition status, CS,
is set based on the floating point result in registers Rl and Rl1+1 and over=-
flow. Overflow is defined as exponent overflow or underflow during the
operation. Upon overflow or underflow a floating point zero, 00000080, is

the result. Rl and R2 must be even.

REGISTERS AFFECTED: RI, Rl+1, CS
TIMING: ©0
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TYPE - PS{REGISTER TO REGISTER SPECIAL)

C 3 ( TPRS )
o a7
U TPRSI

EARSEL = 00
IVIMP = 0

JADOQ = RSt
MCRDY = 1

- A0
$ 1 TPRS?

CPU: RS1762) EARSEL = DO

l 65

. TPRS

- EAR ——» MOR1
D0 ——— EAR

CPU: RS2(763! MCRDBY = 1 A2] ——= MQR!
EARSEL = Do

‘ 66
TRPS4
Do = FEAR

EAR — MOR2
LDEAR R2j -~——» MGR2

1]
D

77-0819--vA-18

Figure 24 ., TYPE « PS (Register to Register Special)
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FLOATING POINT DIVIDE, (R1i, R1)) * (MEMORY, MEMQRY «1) = (R1i, Rij)

TYPE QP CQOE
FO o ( FD ) |
FOR 08
FoI 09 FO1 541 1
4
R1i — 00
3
FO2 245
:
Ry =00 4

4
g e

MORZ — DI

MS OPERANU 1
01— 00

FD4 i 41 ]

MORT— O

LS OPERAND
0i— 0o

FD§ l 250

Ry -01—*RY
MQR1 -+ Nj
FLGSEL » EAU
CRYGPEN =1

4w
)

LS OPERAND

17-0019VA.25

Filgure .+ ., FDR Instruction 1
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MNEMONIC: . OP CODE: g

SHORT NAME:  floating compare, register-to-register

FORMAT: FCR Ri, R2
L L1 Lt 1L 0 0 0 R1 R2
e —t N pmp—t

DESCRIPTION: The floating point number in registers Rl and Rl+1is com-
pared to the floating point number in registers R2 and R2+ 1, If RI<R2
then the condition status, CS, is set to | (less than). If Rl = RZ2 then CS is
set to 2 (equal to), If RL>RZ2 then CSis setto 4 (greater than). No rege-

isters are changed. Rl and RZ must be even.

REGISTERS AFFECTED: cs
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TYPE - PSIREGISTER TO REGISTER SPECIAL}

JADO = RS!
MCRDY = §

L)
$ { TPRS?

CPU: RS1762) EARSEL = 00

l 65
IPASI

EAR —» MOR1

DO ——» EAR

CPU: RS2{753) MCRDY-= { Ry —— MOR1

EARSEL = Do

¥ s

Oo - EAR
EAR = MOR?2
LOEAR A2} ———s MOR2

+
=

17-0819-VA--18

Figure 28 , TYPE - PS (Register to Register Special)
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FLOATING POINT COMPARE: R1 (i, j) - MEMORY {EA, EA + 1) = C.S.

TYPE 0P CODE
Fgﬂ :; FC1 560
F
Fol i MOR1 = DI
BI-Rtj= 00
FC2 1 561
MOR1 - DI
DI ~ R1j~ DO
FLGSEL = EAU
CRYCPEN = |

NO
anos-n

YES: EXP (R1) > EXP (D)

UNLESS OVFL _
FC4 267 a
YES
CRYSAV =17
OVFL
FC10 275
_ MOR2 — 0}
FLGCPEN = 1 FLGCPEN = 1
CPURDY = 1 CPURDY = 1
REGLOD = 0 REGLOD =0
| WGCTTaD = 0 MDTTLOD - 0

77.0818-VA.Z/

Figure 30 . FCR Instruction
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MNEMONIC: OP CODE:

M

SHORT NAME:  single precision multiply

FORMAT: M Rl ADDR nonindexed
M Rl, ADDR, RX indexed
1,1,0 000 0 0 Rl RX ADDRESS FIELD
g ——+

DESCRIPTION: The memory operand is multiplied by the content of register
Rl. The high order part of the product is retained in register Rl: the
lower order part of the product is retained in register Ri+ L
The condition status, CS, is set based on the result, If RX is 0, then the
16-bit address field is used as a memory address to obtain the memory
operand. If RX is nonzero, then the content of register RX is added to the

16-bit address field and the resulting sum is used as a memory address to

obtain the memory operand,

REGISTERS AFFECTED: R}, R1+1, CS3

TIMING: 4.0
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TYPE ~ O (D'RECT MEM. ACCESS INSTRUCTION)

=D &

U w__TPOX1

0BUS—~ EAR | 414
CPU: X+ AF EAR — DI |

EARSEL = 0

U b TPOX2

B0~ EAR 415
OMEM ~ MOR2 asus —+ EAR
BMPQ = 1 FOR TPD

MCROY = 1

I
D

TYPE ~ DE (DIRECT MEM. ACCESS, EARLY CPU RELEASE)

C D

U TPDEX
QBUS~ EAR 416
CPU: X + AF EAR — DI
EARLY EARSEL —~ DO
RELEASE MCRDY = §

v
D

170819-YA-28

Figure 31. TYPE - D (Direct Memory Accesa Instruction)
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SINGLE PRECISION MULTIPLY: Rti * MEMORY - RIi

TYPE 0P COOE
M co
Mi c2
MB 10,11,12,13
Mim €3

G

M1 ‘ 525

Rli ~———» 00

M2 J 203

MOR2 ——— DI
0l —————— 00

+
C D

17-0813-VA-29

Figure 33 . M Instruction
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FRACTIONAL MULTIPLY

M cu

MI €2
MIM €3
MB 10,11,12.13

v D
c-m l 525

0 ——» A
Al ———— €
Ml —————» HSRCTR

e &

MEM —— MQ
MOCT+1 MDC+

0-M0 1 a’

(A+B+MQ1 (IR} —s= A
MOL {R) ———— MQ
MOCT+1 — MOCT

NO
MDCTTC ?
YES
1-M1 ‘ o
(A-B+ MQ}) —— A

ROY

T 1

RESET OVFL ROY

C~DM5 J 21
Al —— R

C-DM6 I 207

AU e R

. oD

77-0819-VA-30

Figure 34 . M Instruction
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MNEMONIC: MR OP CODE: ClI

SHORT NAME: single precision multiply, register-to-register
FORMAT: MR Rl, R2
IILOAOLOLOAOAI L Bl_L L Bzg
T 1 I | 1 1 ki T 1 1) 1 1 L4

DESCRIPTION: The content of register R2 is multiplied by the content of
register Rl and the product is retained in register Rl and Rl+1. The con-

dition status, CS, is set based on the result,

REGISTERS AFFECTED: RIl, Rl+1, CS
-

TIMING:
84




TYPE — R (REGISTER TO REGISTER INSTRUCTION)
TPR

u b TPR 406

MCROY =1
STt =1
ST2=1
LOMCAD =1
WT4RCY =0

770818-VA-31

Figure

e

AN

IYPE « R (Register to Register Instruction)
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SINGLE PRECISION MULTIPLY: REGISTER TO REGISTER: R1i — R2i

MR Ct
MR1 526
R1i— 00
MR2 204
R2i— DO

77-0818-VA-32

Figure 37. MR Instruction
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FRACTIONAL MULTIPLY,
REGISTER TO REGISTER

C-MR1 526

R+~ Bu
0—~A
M1 -+ HSRCTR

C-MA2 l 204

R2i—'MQL

MDCT +1 — MOCT

0~-MQ 1 0

(A+B MOI) (1R) = A
15 M, (1R) = MQ,
MOCT « 1 - MOCT

NO
‘ MOCTTC?

YES
1-M1 0

(A-B'MQl— A
ROY

0-M2 l 1

RESET OVFL
ROY

C-OMRS l 215

A - A1

C-DME l 207

A, Rl

77-0818-vA-33

Figure 38 . MR Instruction
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MNEMONIC: MI OP CODfL: C2

SHORT NAME: single precision multiply indirect

FORMAT: MI Rl, ADDR nonindexed

MI Rl, ADDR, RX indexed
1 1110 O'O 01 0 Rl RX ADDRESS FIELD
e —————

DESCRIPTION: The memory operand is multiplied by the content of register
R1l, The product is retained in register Rl and Rl+1. The condition status,
CS, is set baged on the result,

If RXis 0, then the l6-bit address field is used to fetch a memory address.
This memory address is used to obtain the memory operand. If RX is
nonzero, then the 16-bit address field is used to fetch an address, The
content of register RX is added to the fetched address and the resulting sum

is used as a mernory address to obtain the memory operand.

REGISTERS AFFECTED: Rl, CS
TIMING: 5.0
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TYPE ~ | {INDIRECT MEM, ACCESS INSTRUCTION)

C

TPIX >

C TPI

D

1] TPIX1 427 v TP 423
08US—~ EAR 0BUS — EAR
INDIRECT AD OMEM ~+ MOR2 OMEM — MOR2
DIRECT AD IVIMP =0 IVIMP = 0
JADD = BUS2X JADD = BUS2
MCRDY =1 MCRDY = 1
S i‘TPIXZ 430 S l TPIZ 424
CPU: BUS2X M RX = M -
OR2 + DO OR2 —~ 00 CPU: BUSS
EARSEL = D0 EARSEL = 00

v 415
Con D

TYPE — IE (INDIRECT MEM. ACCESS, EARLY CPU RELEASE)
(T

oD D

U TPIEX1 431 U TPIEY
SAME AS SAME AS
TPIX1 TP
S i TPIEXZ 432 S & TPIE2 426
MOR2+ RX~ DO EARLY MOR2 —~ O
EARSEL = 00 RELEASE EARSEL = DO
MCRDY =1 MCRDY =1
; 415
()
77.0819-VA-34

Figure 39. Type - [ (Indirect Memory Access Instruction)
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B c

SINGLE PRECISION MULTIPLY: R1i * MEMORY -~ Rl

TYPE 0P CODE
M co
Mi €2
M8 10,11,12,13
MM €3

D
M1 j 525

Rli ———— 00

M2 ‘ 203

MOR2 —* 0|
0l e 00

+
D

77-0819-VA-29

Figure 41 . MI Instruction
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FRACTIONAL MULTIPLY

M
M)
MIM
C~-M1 525 s
0— A
R1t —~ 8,
M1 — HSRCTR
C-M2 1 203
MEM — MGL
MOCT +1 - MOCT

0-MO 0

(A +B-MQ1 (1R} = A

MOL (1R} ~ MQL
@ MOCT + 1 —~ MDCT
NGO

b MOCTTC?

YES
1-M1 0’

(A -B8-MQH—A
ROY

0-M2 l 1

RESET OVFL
RDY

C-OMS l m

A= RYj

C-OM§ l 207

A, = Rl

co
c2
c3
10,11,12, 13

71-0818.vA-35

o

. MI Instruction

1~

Figure

93
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MNEMONIC: D OP CODE: DO

SHORT NAME: single precision divide

FORMAT: D Rl, ADDR nonindexed
D Rl, ADDR, RX indexed
1 1 0 1 00 0O R1 RX
—+ ettt J'wg Attt ADDRESS FIELD
L 16 1

DESCRIPTION: The content of register Rl and Rl1+1 is divided by the memory
operand. The quotient is retained in register Rl and the remainder is
retained in register Rl + i. Overflow occurs if the magnitude of the num-
ber in storage is equal or less than the magnitude in register RL
The condition status, CS, is set based on the result in register Rl and
overflow, If RX is 0, then the 16=bit address field is used as a memory

address to obtain the memory operand. If RX is nonzero, then the content

of register RX is added to the 16~bit address field and the resulting sum is

used as a memory address to obtain the memory operand. Rl must be even,

REGISTERS AFFECTED: RI, Rl+1, CS

-

TIMING; 4-°
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TYPE - O (DIRECT MEM. ACCESS INSTRUCTION)

=

U TPOX1

0BUS— EAR | 414
EAR— DI
EARSEL =0

v i‘ TPOX2

00 — EAR 415
OMEM — MOR2
BMPQ = 1
MCROY =1

I
oD

TYPE — DE (DIRECT MEM, ACCESS, EARLY CPU RELEASE)

e )
U ; TPOEX

G

CPU: X + AF

QBUS — EAR
FOR TPD

QB8US —~ EAR 416
CPU: X + AF EAR — DI
EARLY EARSEL = DO
RELEASE MCRODY =1

v
Con D

77-0813-VA-28

Figure 3. Type « D (Direct Memory Access Instruction)
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SINGLE PRECISION DIVIDE, REGISTER TO MEMORY: (R1i, R1)) = MEMORY — (R1i, RY))
{IN EAU) {a, R

TYPE 0P _COOE
0 00
ol 02
0B 14, 15,16, 17 R1j— 00

DIM 03 :
02 l 23
03 l 234

MOR2 — OI
01— 00

>

01 535

06 W 344

..'2_< EAURDY = 17 >

YES
05 @ 38

01— Ry

06 346

DZERQEN =0

0l —+ Rl

Sample EAU FLAGS
CPURDY =1
MOCTLOD =0
REGLOO = 0

17-0818-VA.36

Figure <3, D Instruction
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0 0o
C 0 j ol 02
oim 03
08 14,15, 16,17

c-M L 536
R~ MQL

¢-01 i 233

Rlim MQ, t: +ifMOYe0
DO =+ HSRCTR it Mt s

c-03 ¢ 224 QBIT = |F32=832)

Feh
MQ{1L) = MQ
Q8IT - M1
MOCT+1 - MOCT

1-01 l 20

(A s8] (1) —A
Sample OIVQVFL
MO (1L) — M0
QBIT — MQ1
MOCT+1 - MDCT

C--04 l 344
0-02 21’

ROY
1A =8 (1)~ A
MQ(1L) — MQ
0817 — MQa1 c-0§ 345
MDCT+1 — MOCT
NO A, RYj
MOCTTE ?
MQ -~ A
1-03 l*“ 21 C-D6 ‘ 346
tAzBl— A
MQ (1L) = MQ AL R
QBIT — MQ1
pOY ;

D

17-0819-vA4t

Figure 46 . D Instruction
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OP CODE:

MNEMONIC: DR
SHORT NAME: single precision divide, register-to-register
FORMAT: DR Rl, R2
1, 1,010 0,0 1 RI R2
J I } } ! } [ ] ! 4 1
-t 11 I—

i

DESCRIPTION: The content of registers Rl and Rl + 1 is divided by the cone
tent of register RZ2.

remainder is retained in register Rl plus one.

is set based on the result in register Rl and overflow.

The quotient is retained in register Rl and the

REGISTERS AFFECTED: RI1, Rl+1, CS
4,0

TIMING:

99

The condition status, CS,

R] must be even.




b e e o e I A

. TYPE - R (REGISTER TO REGISTER INSTRUCTION)
3 TPR

U ¥ TPRA06

MCRDY = 1
STi=1
ST2=1
LOMCAD = 1
WT4RDY =0

I1DLE
77-0819-VA-31

Figure 47 .

Type - R (Register to Register Instruction)
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SINGLE PRECISION DIVIDE, REGISTER TO REGISTER: (R1i, R1j}=+ R2i —>(R1i, R1j)

a.R
TYPE 0P CODE ( OR )
DR D

OR 536

Rtj— 00

0R2 235

R1i— 00

DR3 2386

R2i~ 0O

D

77-0819-VA.38

Figure 49 ., DR Instruction
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FRACTIONAL DIVIDE, REGISTER TO REGISTER
0R 01

= «itMQ1= 0
~itMQ1=0Q

QBIT = (F32 =832}

Rii ~ Ma,
D0 — HSRCTR

C-0R3 l 238

M2~ A
R2i — B,

0-D0 l 20

FeA
MQ (1L) ~MQ
QBIT - MQ1
MDCT+1 — MOCT

C-D4 344

101 l 20 ROY

(A8 (1L)—~ A
Sample DIVOVFL C-05 345
MQ (10) —~ MQ ]
QBIT ~ MQ1 Ay~ Rl
MOCT»1~ MDCT M2 — A

C-D6 l 346
0-02 21 )
AL"’ Rli
MQ (1L}~ Ma
asiT - mm .

MOCT+1— MDCT
0cT+1 ~ Mo (ev0 )

MDCTTC ?

(A*B)— A
Ma (1L - Ma
QeIr ~ MQ1
ROY

77-0819-VA.39

Figure 50 . DR Instruction
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‘ MNEMONIC:  py OP CODE: p>

SHORT NAME: single precision divide indirect

FORMAT: DI Rl, ADDR nonindexed
. DI Rl, ADDR, RX  indexed
L 1.0 1:OlolllO Rl RX ADDRESS FIELD
T p—t—rt t——

DESCRIPTION: The content of register Rl and Rl + 1 is divided by the memory
operand. The quotient is retained in register R! and the remainder is
retained in register Rl + 1. The condition status, CS, is set based on the
result in register Rl and overflow. Rl must be even.

If RX is 0, then the l6-bit address field is used to fetch memory address.
This memory address is used to obtain the memory operand. If RX is
nonzero, then the 16-bit address field is used to fetch an address. The
content of register RX is added to the fetched address and the resulting

is used as 2 memory address to obtain the memory operand.

REGISTERS AFFECTED: R, Rl+ 1, CS
TIMING: 5.2
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TYPE — 1 (INDIRECT MEM. ACCESS INSTRUCTION)

T o

U l TPIX1 427 U TPIV 423
08US — EAR 08US ~ EAR
INDIRECT AD OMEM — MOR2 OMEM ~ MOR2
DIRECT AD IVIMP =0 IVIMP = 0
JADD = BUS2X JADD = BUSZ
MCROY =1 MCROY =1
) L TPiX2 430 S l TPI2 424
CPU: BUS2X - -
MOR2Z +RX — DD MOR2 — 00 CPU: BUSS
EARSEL = 0O EARSEL = DO

-
e D)

TYPE - 1E (INDIRECT MEM. ACCESS, EARLY CPU RELEASE)

oo D e

u TPIEXY 431 U TPIET
SAME AS SAME AS
TPIX1 TP
S l TPIEX2 432 S L TPIEZ 428
MORZ + RX — DO \ EARLY l MORZ — DI
EARSEL =00 ? RELEASE‘ EARSEL = DO
MCROY =1 MCROY =1

L l

v 415
C TPDX2 )

77-0818-VA.34

Figure 51 ., Type = I (Indirect Memory Access Instruction)
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SINGLE PRECISION DIVIDE, REGISTER TO MEMORY: (R1i, R1j) = MEMGRY ~ (R1j, R1))
(IN EAY) (Q, R}

TYPE QP CODE
00

! 02 01 535
08 18,15, 16, 17

OiM 03

R1j—+ 00

02 1 233

R1j— 00

03 234
MOR2 — 0!
0l —~ 00

06 344

NO/
=17
N EAURDY = 17 >

YES

0s 345

Ot — R1j

06 346
DZEROEN = 0
0!~ R
SAMPLE EAU FLAGS
CPURDY =1
MDCTLOD =0
REGLOD =0

77-0819-VA 40

Figure 53 . DI Instruction
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NO

0
D T
Dim
D8

£-01 535
R1j = MQ

C-02 i 233

Ati—+MQ, *:
00— HSRCTR

c-03 JL 234

MQ = A
MEM ~ By,

0-D0 l 20°

Fzp

MQ (1L) = MQ
QBIT — MQ1
MDCT+1 — MDCT

1-01 i 20

(A+BI{IL)—~A
Sample DIVOVFL
MQ (1L) = MQ
asiT — M1
MOCT+1 =~ MOCT

Do
02
03
14, 16,16, 17

+ifMQ1 =0
~ifMQ1 =1

0-02 20
RDY
(AB) (1L} — A
MO (1L = MQ
QBIT = M1 c-0% 145
MOCT+1 —~ MDCT
MOCTTC ? Au™ AN
‘ MO~ A
YES
J C-08 vy 346
(A+B) = A
MO (1L) — MQ AL Ru
QBIT — MOt
ROY ‘
Co

11-0819-VA41

Figure 54, DI Instruction
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MNEMONIC: DABS OPCODE: AC

SHORT NAME: double precision absolute value register to register

FORMAT: DABS Rl, R2
DABS Rl

1 01 01 1 0 0 R1 R2

et —t—————

DESCRIPTION: If the sign bit of register R2 is a one, then double precision
negate register R2, RZ2 + 1 and place result in Rl and Rl +1, otherwise
place R2, R2 +1in Rl, Rl+ 1, respectively, Rl and R2 must be even. R!

may equal R2,

REGISTERS AFFECTED: Rl, Rl + 1, CS
TIMING: L. 6
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TYPE - R (REGISTER TO REGISTER INSTRUCTION)

U TPR 406

MCROY =1
STi=1
ST2=1
LOMCAD =1
WT4RDY =0

77-0819-VA.31

Figure 55. Type = R (Register to Register Instruction)
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QOUBLE PRECISION ABSOLUTE VALUE: |R2(i. i)| = A, )

TYRE WLt (o)

DABS AC
DABS1 513
R2i = DO
FLGSEL = 3
X CRYCPEN = 1
DABS2 Jr 160
R - R1j
FLGCPEN = 1
NO YES
CRYSAV = 17
TN e
oLR2 454 ONEGH 455
R2i— Rt -R2j~ R1j
DZERQEN = 1 CRYCPEN = §
FLGCPEN = 1 FLGCPEN = 1
CPURDY =
MOCTLOO = 0 UNEG2 456
REGLOD - 0 ~R2i = R1i
CINEN = 1
DZEROEN = 1
FLGCPEN = 1
( IF t:) CPURDY = 1
MDCTLOD = 0
REGLOD = 0
( IF j

770819.VA42

Figure 57 . DABS Instruction
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MNEMONIC:  pneG OP CODE: g
SHORT NAME: negate double precision register

FORMAT: DNEG Rl, R2
DNEG Rl
.
1101111:1111010 Rl _ RZ
T T I T T LS 1 1

DESCRIPTION: The content of register R2 and Register R2 + 1 is negated.

The result, the negative of the original double precision number, is placed

in Rl and Rl +1. R2 may be equal to Rl. The condition status, CS, is set
based on the double precision result in registers Rl and Rl + | and overflow,

R! and R2 must be even.

REGISTERS AFFECTED: Rl, Rl +1, CS
TIMING: b 4
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TYPE - R {REGISTER TO REGISTER INSTRUCTION)
TPR

U TPR 406

MCROY = 1
ST1=1
§T2=1
LOMCAD = 1
WT4R0Y = 0

77-0818-VA-31

Figure 5338 Type - R (Register to Register Instruction)
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DOUBLE NEGATE: ~ (R2 (i, it] ~ R i, ))
TYPE QFE COOE

ONES 8¢ C ONEG )
cmaml 456

-R2j ~ RYj
FLGCPEN = 1 LSw
CRYCPEN = 1

DNEG2 L 456

-R2i = R
CINEN = 1
DZERO = 1
FLGCPEN » 1
CPURDY * 1
MDCTLOD = 0
REGLOD * 0

;
=)

MSW

77.0818.VA4]

Figure 60. DNEG Instruction
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MNEMONIC: SRC OP CODE: ¢4
SHORT NAME: shift right eyeclic

FORMAT: SRC R2, N

01L 1 0 011 0 O N-l R2
1 1 1 1 ) U 1 i 1 i L 1 5
Tt | AR SRS BRERR B LR 1 1

DESCRIPTION: The content of register R2 is shifted right cyclically N posi-
tions. The field N-] being zero represents a shift of | position. The field
N-l being 15 represents a shift of 16 positions., Bits shifted out of the least
significant bit position enter the sign position. No bits are lost. The
condition status, CS, is set based on the result in register R2. R2 may be
any general register. The assembler subtracts 1 from the programs value

of N and places N-l in the 4 bit field,

Result in Register Resulting Condition Status
R2 Bits Hex JC Mnemonic
0 0010 2 EZ
sign bit =1 0001 1 Lz
otherwise 0100 4 GZ

REGISTERS AFFECTED: R2, ¢S
TIMING: 1.4+ 0.4 per position
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TYPE — R (REGISTER TO REGISTER INSTRUCTION)

TPR

U TPR 406

MCROY = 1
STi=1
ST2=1
LOMCAD =1
WT4RDY = 0

77-0818-VA.31

Ia

Figure 61 . Type - R (Register to Register Instruction)
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TYPE

SRL
SRA
SRC

S L e TP RpvRy SE e L Pt SRR “ws -

SHIFT RIGHT: R2l == R2i (SHIFTED RIGHT N = 1 TIMES) _
0P COOE

61 423 Q SRX )
62 428
64 427 SAL Y
SRA 1
SAC
CMJADR1 = 1
JMED =1
MDCTEN =1
SHAT = 1
R2i (SR} —* R2i
NO

-—\ MOCTTC = 17

YES
SAX2 21

R2i— DO
FLGCPEN « 1
CPURDY =1
REGLOD =0
MOCTLOG = 0

v
)

17.0819-VA44

Figure ¢3, SRC Instruction
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MNEMONIC: DSLL OP CODE: 45
SHORT NAME: double shilt left logical
FORMAT: DsLr. RZ, N

I

0.1 1.0 0 1 0 U] Nl
1

1
T T

1

L
| k!

L

1

4=
f o)

DESCRIPTION: The content of registers R2 and R2 + | are shifted left logical
N positions. The fileld N«l being zero represents a shift of | position. The
fleld Nl being |5 represents a shift of 16 positions, Zeros enter the least
significant position of register R2+ 1. Bits shifted out of the sign position
of register R. + | enter the least significant position of register R2, Bits
shifted out of the sign position of register R2 are lost., The condition
status, CS, is set based on the double precision result in registers R2 and

R2 +1. RZ2 must be even,

Result in Registers Resulting Condition Status
2, R2+1 Bits Hex JC Mnemonic
both zero 0010 2 EZ

sign bit of R2 = | 0001 l Lz

otherwise 0100 4 Gz

REGISTERS AFFECTED: R2, R2+1, CS

TIMING: 1.8 +0. 4 per position
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TYPE — R (REGISTER TO REGISTER INSTRUCTION)

U W TPR 406

MCROY = i
STi=1
ST2=1
LOMCAD = 1
WT4RDY = 0

77-0819-VA-31

Figure 6% ,

Type - R (Register to Register Instruction)
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DOUBLE PRECISION SHIFT LEFT: R2i, R2j — R2i, R2j (SHIFTED N+ 1 TIMES)

—t
'Y
a2}

op_CODE

ostL 65 C osLX )

osLe 68

OsSLLY 430
OSLCY 434

R2j—~ Q

osti2 22
psLCz 26

JIMED = 1

MDCTEN =1

SHRT =0

R2i{SL), QISL} —~ R2i, Q

NO
‘ MOCTTC=17?

YES
DSXX3 31

Q- RYj
DZEROEN = 0
FLGCPEN =1

DSX X4 —l. 30

R2i —~ R2i
DZERCEN = 1
CPURDY =1
FLGCPEN = 1
MOCTLOD = 0
REGLON = 0

G

770813-VA45

Figure 66, DSLL Instruction

124

T ' B i e e tiren e AT e 2 A Y

s g " o0




DA . e e e e S r v

S AR e e TN T W=

MNEMONIC: DSRA OP CODE: 47

SHORT NAME: gouble shift right arithmetic
FORMAT; DSRA  R2, N

o st 1t g
R AR S B |

01,1 00 1 1 1| N-l R2
3 i 4 1 I 1 4
! S RN S RABARN BE R |

DESCRIPTION: The content of registers R2 and R2+1 is shifted right arith-
metic N positions. The field N-1 being zero represents a shift of 1
position. The field N-1 being 15 represents a shift of 16 positions. The
sign position of register RZ is not shifted. The sign bit is copied into the
next position for each bit shifted. Bits leaving the least significant posi-
tion of register R2 enter the sign position of register R2+1. Bits leaving
the least significant position of register R2 + |l are lost. The condition
status, CS, is set based on the double precision result in registers R2 and

R2+1. R2 must be even.

Result in Registers Resulting Condition Status
R2, R2+1 Bits Hex JC Mnemonic
both zero 0010 2 EZ
sign bit of R2 =1 0001 l LZ

otherwise 0100 4 Gz

REGISTERS AFFECTED: g2, R2+1, CS
TIMING: |- 8 +0, 4 per position
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TYPE - R {REGISTER TO REGISTER INSTRUCTION)

U TPR 406

MGCRDY = 1
STi=1
ST2x1
LOMCAD =1
WT4RDY = 0

ILE
770818-VA.31

Figure 7 . Type - R (Register to Register Instruction)
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ODQUBLE PRECISION SHIFT RIGHY: R2i, R — R2i, R2j ISHIFTED N + 1 TIMES)

TYPE

OSRL
DSRA
OSRC

QP_CODE

6§ C DSAX )

67
68

OSRLY 431
DSRAL 41
OSRC) 43§

R2j—Q

OSsRL2 23
OSRA2 25
0SRC2 27

EER]

MDCTEN = 1

SHRT + |
R2i(SR),0{$R) — R2i, Q

L"°—< MOCTTC » 17
YES
DSXX3 2

Q- Ry
OZEROEN =0
FLGCPEN = |

0SXX4 ¢ 30

R2i = R2i
DZEROEN =1
CPURDY = 1
FLGCPEN = |
MBCTLOD = 0
REGLOD =0

770819-VA4E

Figure 69. DSRA Instruction
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y = .

MNEMONIC: DSREG QP CODL: 49
. SHORT NAME: double ahift right eycelie
" Y
FORMAT: DSRC R2, N 1
01 U 0 1 0 01 Ne=l R2
e B R M s e i fr

DESCRIPTION: The content of ragisters R2 and R2 +1 is ahifted right cyelis
cally N poaitions, The fleld N«l belag zera represants a shift of | position.

The flald N-1 belag 18 vepreaents a ahift of 16 positions, Bita leaving the

least signiflicant poaition of raglater P2 +1 antav the sign position of vayi=

ster R2, Bits leaviag tha leaat significant poasition of ragister R2 anter the

sign position of regiaster R2+1, No bits are loat. The condition statua, €S, {
is set based on tha double pracigion result in registars R2 and R2+1, R2
must be even, {
Result {n Registers Resulting Condition Statua
R2, R2+1 Bits Hex JC Mnamonic
both zero 0010 2 B2
sign bit of R2 =} 0001 l LZ
otherwise 0100 4 G2 ]

REGISTERS AFFECTED: Rr2, R2+1!, CS
TIMING: L. 8+0.4 per position )
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TYPE ~ R (REGISTER TO REGISTER INSTRUCTION)

\ TPR 400

MCRQY = ¢
ST
STav
LOMCAD =1
WTARDY = 0

17:0819:VA-3

Figure 70. Type « R (Register to Register Instruction)
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OOUBLE PRECISION SHIFT RIGHT: R2i, R2j — R2i, R2j (SHIFTED N + 1 TIMES)
TYPE 0P CODE

DSRL 66 C DSRX )

DSRA 67

0SRC 89 DSRLY 431
DSRA1 433
DSRC1_435

R2j—+4Q

DSRL2 23
DSRA2 25
DSRCZ 27

JIMED = 1

MOCTEN = 1

SHRT = 1
R2i(SR),QISR) = R2i, Q

NG
L—-< MDCTTC =17
YES
DSXX3 31

Q- R2j
DZEROEN=0
FLGCPEN = 1

DS X X4 ¢ 30

R2i -+ R2i
DZERQEN =1
CPURDY =1
FLGCPEN =1

MOCTLOD=0

REGLOD =0
iF

C )

77.0819-VA46

Figure 72. DSCR Instruction
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SECTION IV

LOW-LEVEL MACHINE (LLM) DESIGN

4,1 SCOPE OF DESIGN

The results of the software analysis performed during this contract
provided the natural foundation for a family of airborne digital computers.
With appropriate modifications, the present AYK~15 computer would
become the high performance member of the computer family. However,
the '"low end' or lower performance members of the family were yet to be
defined. It is felt by both the Air Force and Westinghouse, that this "Low
Level' machine should be instruction set compatible with the higher mem-
bers of the family, while minimizing coest, power and volume; and still
using the same support software package and facilities,

To this end, an inves‘tigation and block level design was performed to
more fully define the characteristics of this Low-Level Machine (LLM).
This investigation resulted in a detailed study of machine architectures
suitable for the LLM implementation as well ag an I/O interconnect
definition (I-BUS) amenable to I/O expansion and CPU interconnection
(multiprocessing). The results of this investigation are part count,
power and execution time estimates for the proposed LLM.,

What follows is a summary of this investigation which concludes with a
block level description of the proposed LLM.

4.2 APPLICATION BASE OF LLM

The first step in the LLM investigation was to define the type of problem
to be solved by the LLM. Since the computer is intended to be used in a
multitude of applications, an application base had to be defined for the new
machine in order to limit the scope of the investigation. With the help and

experience of AFAL, it was decided that the LLM should be used primarily
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in a multicomputer avionics environment, It would, therefore, perfurm
pre-nrocessing of sensor data prior to tranamission of the data to other
processors within the system, Similarly, the LLM would perform any
post processing necessary for actuator data. Flgure 73 {llustrates a
desired application environment for the LLM,

Since the sensor/actuator requirements may be quite diverse from one
aircraft to another, the LL.M‘ohould alao provide an afficiont means of
interconnection of groups of LLM's to modularly expand the data handling
capability of the sensor/actuator system, Therefore, as the number of
sensors for the system increases, additional LLM's may be added in a
modulayr building block fashion as illustrated in figure 73.

Using this application model as a starting point, past programs were
reviewed by AFAL and Westinghouse in order to establish the throughput
required for the LLLM, With the throughput defined, a set of design goals
were then established for the LILM.

4.3 DESIGN GOALS

A get of five design goals were established to provide guidelines for the

LLM design. They were:
Upward software campatability with DAIS (AYK«15)
b. 2.5 to 5 0 usec 16-bit fixed-point ADD
c. Universal memory interface
d. I-BUS I/O design
e, Minimize volume and power

Software compatability with the modified AYK-15 machine, was given
the highest priority as a design goal in order to take advantage of the
gsoftware support developed for the AYK-15, However, wherever necess-
ary, instructions were omitted from the LLM to simplify its structure and
minimize the parts count. As a result, the LLM became ''upward compat-

able' with modified AYK«15 computer. (See Paragraph 2.5.3, Subset

for LLM),
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After reviewing the application bases for the LLM, the goal of 2. 5
usac was deemed suitable for a 16«bit fixed-point ADD execution time.
This design goal permitted a sizing of the control portion of the LLM to
provide a starting point for the design effort.

Because the LLM was intended to be used across a wide range of appli-
cations, it was felt that the ability to adapt the LLM to a particular
application by varying the memory organization was highly attractive.
Therefore, a generalized memory interface to allow for varying memory
speeds and technologies (IC or Core) was included as a design goal.

In order to provide for modular growth of the I/O and a link for multi-
processor application structures, the [-BUS approach developed by AFAL
(Final Report, Cont. No. F33615-74-C~1018) was adopted as the standard
I/O interface.

Finally, in order to reach a maximum application base it was deemed
desirable o minimize the volume of the LLM by use of available LSI
technology wherever practical. To this end, speed and performance were
sacrificed, within the established design goals, to allow for a minimum
parts count (and hence volume) configuration.

4,4 LLM ORGANIZATION
4.4,1 Arithmetic Loop

The DAIS instruction set is organized around a general register machine
utilizing a group of 16 general registers. This, along with the desired speed
goals dictated the choice of the AM«2901 u=processor as the building block
of the LLM arithmetic unit, Figure 74 illustrates the resulting architec-
ture for the LLM.

The LLM is organized around a single 16=bit data bus (MDTA) within
the CPU, Memory, 1/O and CPU data are 2ll transferred over this bus.
Two groups of 8-bit wide 2901's are used to process data and form the
register file for the LLM. Registers, MORI and MOR2 are memory

operand registers used as intermediate buffer registers. SCT is a 5-bit
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s
counter register used as a sequence counter for multiple clock micro-
e program routines.

B 4. 4.2 Control Structure

The control portion of the LLM is comprised of a 512-word by é4-bit
microprogram store contained in Read Only Memories (ROM's). A micro-
program sequencer (such as the AM~291l) is used to control the sequencing
of the microprogram instructions for CPU algorithm execution. Micro-
program address sources may be selected from either a microprogram
jump field (JADD ROM) or from a set of ROM's to allow efficient micro=-
program branch capability, Also, system flags may be individually tested
by the microprogram sequencer to facilitate conditional microprogram
branching.

Each microprogram ROM output is followed by a holding register to
allow microinstruction fetches to be overlapped with microinstruction
execution.

Discrete registers are provided for the formation of the effective add-
ress (EAR) for memory address instructions and for the instruction
counter (IC). Each of these registers and the MDTA bus are connected to
the I-BUS Control Unit (ICU) which provides the interface to the I-BUS.
The memories and /O are then interfaced to the I-BUS,

4, 4.3 1I/O Organization

The /0O and memory system is interfaced with the I-BUS to provide a
standard interface for ill__I/O elements. Therefore, a standard set of
IO modules may be developed and a LLM application configuration by
simply "plugging in' the appropriate modules. An I/O module may be as
simple as a discrete interface or as complex as a 1553-A processor
(figure 75).

The memory system is interfaced similarly to an I/O device, through

the MIU (Memory Interface Unit). Any memory technology (IC, Core,
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EXPANDABLE ’{
F; 1/0 SYSTEM

INTERRUPT
REQUEFSTS

|
M
,__A_.\
vo L..]| /o INTRPT MiU
SYSTEM ‘
, % I DATA
L4
1-BUS
{ e ADDR _
[ 77-0819~VA-69

Figure 75. LLM I/O Organization
CCD, etc.) ray be interfaced with the MIU since all memory timing is
performed in a ""handshake' fashion.
The interrupt system is interfaced direc 'y with the I-BUS and provides
s ixteen levels of priority interrupts to the CPU.

4, 4.4 Machine Operation and Timing

In order to more fully uaderstand the uvperation of the LLM, five
microprogram control routines will be described in detail. The routines
are:

a. Instruction Fetch
b. Fixed point ADD (Register/Memory)
c. SHIFT Instructions
d. Floating point ADD
e. Multiply instruction
A microprogram flow chart is included for each of these instructions

to facilitate the explanation.
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a, Instruction Faetch

Duriag the Instruction Fetch cycle, the CPU reads the curreant 2-word
instruction to be executed and saves it in IR, MORI and MOR2, Referring
to figura 76, each step of the microprogram execution for the Instruction
Fetch cycla is indicated as a reparate block, Figure 77 provides the
datailed timing for the Instruction Fetch cycle.

The Instruction Fetch begins by passing the IC to the ICU and requesting
a mamory read operation from the memory system (IFl of Figure 76). The
CPU Control then increments the IC and proceeds to Step IF2 to await the
completion of the memory cycle. When the memory data is ready, the CPU
proceeds to IF3 and loads the fetched memory word (most significant
16 bits of the 32-bit instruction word) into IR and MOR2., A new memory
cycle is then initiated to read the second half of the instruction. Once
again, the IC is incremented and the CPU waits for the completion of the
memory cycle., When the memory cycle has ended, the CPU proceeds to
step IF5 and loads register MORI with the second half of the instruction,

The instruction fetch cycle is then completed with the instruction
saved in MOR! and MOR2, The CPU next proceeds to execute the ins=
truction before returning to the Instruction Fetch cycle. Figure 77
illustrates the detailed timing for this sequence of events.

b. Fixed-Point ADD

The Fixed-Point ADD performs a parallel 16~bit two's complement ADD
of an accumulator register (RA) and a memory operand. The sum is placed
in RA and the appropriate arithmetic flags are sampled.

Referring to figures 78 and 79, the CPU begins execution of the ADD
instruction by calling a micro-program subroutine to compute the effective
address of the memory operand. The subroutine returns the calculated

address in the EAR register.
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C tNST FETCH >

! IF1

IC »ADDR
IC + 1 et | C

MEMORY READ

k 1F2
<MEMORY RE)ADY —>£JO_.
YES
1

MDTA ——e MOR2
H —a |R

{C —————e= ADDR

IC + | ————m |C

MEMORY READ

k IF4
< MEMORY READY >_&
YES
IF5

( MDTA —————e MOR1 \>
‘ EXIT >

Figure 76, Instruction Fetch Flow
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During atep ADDI, the effactive address is pagsed to the memory and a
mamory read s initlated, The CPU walits for the memory to complete its
read ¢ycle in ADD2, When completed, the CIPU loads the memory data
into MOR2 at Stap ADD3,

The CPU now haa both operands for the fixed-point ADD and completes
the ADD operation during Step ADD4, During ADD4, MOR2 is enabled
onto the MDTA bus and passed to the 2901 u-processor. The CPU control
ROM's inatruct the microprocessor to perform a l6-bit fixed=point ADD
to RA and return the result to RA, Simultaneously with RA being loaded
with the sum, the three arithmetic flags (Sign, Overflow, Zero) are
updated to raflect the results of the arithmetic operation,

The CPU has now complaeted the ADD instruction and returns to initiate
the next lnatruction fetch cycle,

¢, SHIFT Instruction
Figures 80 and 81 {llugtrate the execution of the SHIFT instruction,

During SHI register R, is repeatedly shifted while SCT (which contains the

A
shift count) {s decremented, The microprogram sequencer continually

tests the value of SCT and causes microprogram control to be passed to
gtep SH2 when SCT {s mero, During SH2, the arithmetic flags are sampled
and finally the next instruction fetch cycle is begun.
d. Floating Peint ADD
The floating point instruction performs a 32-bit floating-point ADD (8-
bit exponent and 24-bit fractional mantissa) between the double register

pair (RA' R l) and the double-memory word designated as the operand.

A+

The result ia returned to (R,, R ) replacing one of the original oper-

A A+l
ands, Both operands are assumed to be normalized floating point numbers

and their sum is normalized prior to placement in (RA. RA . l).

For purposes of discussion let R _ represent the exponent portion of the

E

register operand while M _ represents the exponent portion of the memory

E
operand,
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Figure 80. Shift Instruction Flow

Referring to figure 82, the algorithm begins with an effective address
calculation for the memory operand. The double-word memory operand
is then read from memory and the most significant half saved in MOR2
while the least significant half is saved in MORI. The floating-~point
algorithm now peing with microprogram step FPAL

During FPAI, RE
into EREG of the Exponent Arithmetic Unit (see figure 74). The next

(exponent field of the register operand) is transferred

microprogram step performs an '"excess 128" subtract in the exponent

arithmetic unit forming (R_ = ME). This represents the exponent diffe~

rence (AEXP) of the two nuEr:nbers and will be used to indicate which operand
needs to be adjusted (shifted right).

The operand adjustment algorithm begins at FPA3 where the sign of
AEXP is tested to determine which operand is to be adjusted. Assuming

» the control proceeds to FPA4.

2 )
that RE“ME
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Figure 8Z. Floating - Point ADD
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If the exponent differencing did net overflow then the microprogram
proceeds to FPA6 where it tests to see if the memory operand may be
s uccessfully scaled, If the AEXP value in EREv is greater than or equal
to 24, then no further calculations need be performed and the register

operand will be the answer. However, if the memory operand can be

successfully scaled, the microprogram proceeds to FPA7 where PLA#! is
used to sign extend the mantissa through the exponent field of the memory
operand in MORZ. Next, the register pair (MORZ2, MORI) is shifted right
AEXP places in a microprogram subroutine. The memory operand is now
appropriately scaled for mantissa addition.

FPAS8 loads EREG, with the answer exponent (RE) and proceeds to FPA9

where the exponent field of (RA, R ) is sign extended in preparation for

+
the mantissa add operation of step“;‘P}HO. After the mantissas are added,
microprogram control is passed to a normalize subroutine where the
answer mantissa is shifted left until it is appropriately normalized, Of
course, with each shift left required for normalization, the answer expon-
ent in EREG is decremented. Upon completion of the normalization
subroutine, the answer exponent in EREG is assembled into RE and the
instruction is complete.

e. Multiply

The fixed-point multiply is performed entirely within the 2901 micro-~
processor using a one bit at a time repeated add algorithm.

Referring to figure 83, the multiply algorithm begins with an effective
address computation followed by an operand fetch for the multiplicand. The
multiplication ""setup'’ begins with step MPY! by transferring the multiplier
to the Q register within the 2901 microprocessor. MPY2 loads the constant

1510 from PLA#] (see figure 74) into SCT and shifts Q one place right

entering the least significant multiplier bit into the S flip flop. Next, RA is

cléared during MPYZ2 to act as the partial sum register for the multiply.
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Figure 83. Multiply Flow
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The repeated sums are performed during step MPY4 using the S flip-
flop to control the add operation within the 2901, As each sum is formed
the result and multiplier are shifted one place right to form the next part-
ial sum. The process now continues until 15 partial sums are formed at

which time control is transferred to MPYS5.

In accordance with the rules for performing two's complement multipli-
cation, MPYS5 tests the sign of the multiplier to determine if a correction
cycle for the partial sum is necessary. If required, MPY6 performs the
required subtraction. MPY7 adjusts the partial sum for integer repre-
sentation while MPY8 moves the least significant half of the product into
R to complete the instruction.

A+l
4,4,5 Execution Times

Instruction execution times for the LLM are a function of two criteria.
First, the memory speed has a direct impact upon both instruction fetch
times and operand fetch times. Secondly, the internal circuit delays of
the LLM dictate a maximum frequency for the CPU clock. Using a one
microsecond core memory for instructions and data with a four megahertz

system clock, the following typical instruction times are achievable;

LOAD 3.0 usec
ADD 3.0 usec
STORE 3.0 usec
SHIFT 2,25 + (N=-1) 0, 25 usec
MPY 8.5 usec
FFP ADD (average) 10. 5 usec

4.5 PHYSICAL DESCRIPTION

Using the machine organization shown in figure 74, an estimate of
parts was made to ''size' the LLM. Once a parts estimate was obtained,
an estimate of power consumption was then made. For purposes of esti=
mation, the memory parts and power were omitted while the I/0O

configuration was assumed to be a l6-level priority interrupt system,
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Using presently available parts, table 9 reflects the parts estimates
for the LLM. Accordingly, the LLM could be fabricated from approxi=
mately 120 currently available bipolar devices. Using packaging techniques
similar to the present DAIS computer, the LLM would occupy three

printed wiring boards and dissipate approximately 45 watts.

TABLE 9
LLM PARTS AND POWER ESTIMATES

ELEMENT LSl | MSI | SSI |POWER (WATTS)
CPU 19 32 10 30
ICU 9 16 15 10
1/0 2 4 18 5
TOTAL 30 521 40 45

77-0819-VA.77
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